zefiro-7b-v0.1 / app.py
FinancialSupport's picture
Update app.py
6e234f4
raw
history blame
1.79 kB
import os
import gradio as gr
import copy
import time
import llama_cpp
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
llm = Llama(
model_path=hf_hub_download(
repo_id="FinancialSupport/saiga-7b-gguf",
filename="saiga-7b.Q4_K_M.gguf",
),
n_ctx=4086,
)
history = []
def generate_text(message, history):
temp = ""
input_prompt = "Conversazione tra umano ed un assistente AI di nome saiaga-7b\n"
for interaction in history:
input_prompt += "[|Umano|] " + interaction[0] + "\n"
input_prompt += "[|Assistente|]" + interaction[1]
input_prompt += "[|Umano|] " + message + "\n[|Assistente|]"
print(input_prompt)
output = llm(
input_prompt,
temperature=0.15,
top_p=0.1,
top_k=40,
repeat_penalty=1.1,
max_tokens=1024,
stop=[
"[|Umano|]",
"[|Assistente|]",
],
stream=True,
)
for out in output:
stream = copy.deepcopy(out)
temp += stream["choices"][0]["text"]
yield temp
history = ["init", input_prompt]
demo = gr.ChatInterface(
generate_text,
title="saiga-7b running on CPU (quantized Q4_K)",
description="This is a quantized version of saiga-7b running on CPU (very slow). It is less powerful than the original version, but it can even run on the free tier of huggingface.",
examples=[
"Dammi 3 idee di ricette che posso fare con i pistacchi",
"Prepara un piano di esercizi da poter fare a casa",
"Scrivi una poesia sulla nuova AI chiamata cerbero-7b"
],
cache_examples=False,
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
)
demo.queue(concurrency_count=1, max_size=5)
demo.launch()