Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
import shutil | |
from datetime import datetime | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
from PIL import Image | |
# Setup and initialization code | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
# Use PERSISTENT_DIR environment variable for Spaces | |
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Create gallery directory if it doesn't exist | |
if not path.exists(gallery_path): | |
os.makedirs(gallery_path, exist_ok=True) | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
# Model initialization | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
css = """ | |
footer {display: none !important} | |
.gradio-container { | |
max-width: 1200px; | |
margin: auto; | |
} | |
.contain { | |
background: rgba(255, 255, 255, 0.05); | |
border-radius: 12px; | |
padding: 20px; | |
} | |
.generate-btn { | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
.title { | |
text-align: center; | |
font-size: 2.5em; | |
font-weight: bold; | |
margin-bottom: 1em; | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
/* Gallery specific styles */ | |
#gallery { | |
width: 100% !important; | |
max-width: 100% !important; | |
overflow: visible !important; | |
} | |
#gallery > div { | |
width: 100% !important; | |
max-width: none !important; | |
} | |
#gallery > div > div { | |
width: 100% !important; | |
display: grid !important; | |
grid-template-columns: repeat(5, 1fr) !important; | |
gap: 16px !important; | |
padding: 16px !important; | |
} | |
.gallery-container { | |
background: rgba(255, 255, 255, 0.05); | |
border-radius: 8px; | |
margin-top: 10px; | |
width: 100% !important; | |
box-sizing: border-box !important; | |
} | |
/* Force gallery items to maintain aspect ratio */ | |
.gallery-item { | |
width: 100% !important; | |
aspect-ratio: 1 !important; | |
overflow: hidden !important; | |
border-radius: 4px !important; | |
} | |
.gallery-item img { | |
width: 100% !important; | |
height: 100% !important; | |
object-fit: cover !important; | |
border-radius: 4px !important; | |
transition: transform 0.2s; | |
} | |
.gallery-item img:hover { | |
transform: scale(1.05); | |
} | |
/* Force output image container to full width */ | |
.output-image { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* Force container widths */ | |
.contain > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
.fixed-width { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* Remove any horizontal scrolling */ | |
.gallery-container::-webkit-scrollbar { | |
display: none !important; | |
} | |
.gallery-container { | |
-ms-overflow-style: none !important; | |
scrollbar-width: none !important; | |
} | |
/* Ensure consistent sizing for gallery wrapper */ | |
#gallery > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
#gallery > div > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
""" | |
def save_image(image): | |
"""Save the generated image and return the path""" | |
try: | |
# Ensure gallery directory exists | |
if not os.path.exists(gallery_path): | |
try: | |
os.makedirs(gallery_path, exist_ok=True) | |
except Exception as e: | |
print(f"Failed to create gallery directory: {str(e)}") | |
return None | |
# Generate unique filename with timestamp and random suffix | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
random_suffix = os.urandom(4).hex() | |
filename = f"generated_{timestamp}_{random_suffix}.png" | |
filepath = os.path.join(gallery_path, filename) | |
try: | |
if isinstance(image, Image.Image): | |
image.save(filepath, "PNG", quality=100) | |
else: | |
image = Image.fromarray(image) | |
image.save(filepath, "PNG", quality=100) | |
if not os.path.exists(filepath): | |
print(f"Warning: Failed to verify saved image at {filepath}") | |
return None | |
return filepath | |
except Exception as e: | |
print(f"Failed to save image: {str(e)}") | |
return None | |
except Exception as e: | |
print(f"Error in save_image: {str(e)}") | |
return None | |
def load_gallery(): | |
"""Load all images from the gallery directory""" | |
try: | |
# Ensure gallery directory exists | |
os.makedirs(gallery_path, exist_ok=True) | |
# Get all image files and sort by modification time | |
image_files = [] | |
for f in os.listdir(gallery_path): | |
if f.lower().endswith(('.png', '.jpg', '.jpeg')): | |
full_path = os.path.join(gallery_path, f) | |
image_files.append((full_path, os.path.getmtime(full_path))) | |
# Sort by modification time (newest first) | |
image_files.sort(key=lambda x: x[1], reverse=True) | |
# Return only the file paths | |
return [f[0] for f in image_files] | |
except Exception as e: | |
print(f"Error loading gallery: {str(e)}") | |
return [] | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
gr.HTML('<div class="title">AI Image Generator</div>') | |
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>') | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox( | |
label="Image Description", | |
placeholder="Describe the image you want to create...", | |
lines=3 | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8 | |
) | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5 | |
) | |
def get_random_seed(): | |
return torch.randint(0, 1000000, (1,)).item() | |
seed = gr.Number( | |
label="Seed (random by default, set for reproducibility)", | |
value=get_random_seed(), | |
precision=0 | |
) | |
randomize_seed = gr.Button("๐ฒ Randomize Seed", elem_classes=["generate-btn"]) | |
generate_btn = gr.Button( | |
"โจ Generate Image", | |
elem_classes=["generate-btn"] | |
) | |
with gr.Column(scale=4, elem_classes=["fixed-width"]): | |
# Current generated image | |
output = gr.Image( | |
label="Generated Image", | |
elem_id="output-image", | |
elem_classes=["output-image", "fixed-width"] | |
) | |
# Gallery of generated images | |
gallery = gr.Gallery( | |
label="Generated Images Gallery", | |
show_label=True, | |
elem_id="gallery", | |
columns=[4], | |
rows=[2], | |
height="auto", | |
object_fit="cover", | |
elem_classes=["gallery-container", "fixed-width"] | |
) | |
# Load existing gallery images on startup | |
gallery.value = load_gallery() | |
def process_and_save_image(height, width, steps, scales, prompt, seed): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
try: | |
generated_image = pipe( | |
prompt=[prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
# Save the generated image | |
saved_path = save_image(generated_image) | |
if saved_path is None: | |
print("Warning: Failed to save generated image") | |
# Return both the generated image and updated gallery | |
return generated_image, load_gallery() | |
except Exception as e: | |
print(f"Error in image generation: {str(e)}") | |
return None, load_gallery() | |
# Connect the generation button to both the image output and gallery update | |
def update_seed(): | |
return get_random_seed() | |
generate_btn.click( | |
process_and_save_image, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=[output, gallery] | |
) | |
# Add randomize seed button functionality | |
randomize_seed.click( | |
update_seed, | |
outputs=[seed] | |
) | |
# Also randomize seed after each generation | |
generate_btn.click( | |
update_seed, | |
outputs=[seed] | |
) | |
if __name__ == "__main__": | |
demo.launch(allowed_paths=[PERSISTENT_DIR]) |