text3d / app.py
aiqtech's picture
Update app.py
95dcd2e verified
raw
history blame
11.1 kB
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# Use PERSISTENT_DIR environment variable for Spaces
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
/* Gallery specific styles */
#gallery {
width: 100% !important;
max-width: 100% !important;
overflow: visible !important;
}
#gallery > div {
width: 100% !important;
max-width: none !important;
}
#gallery > div > div {
width: 100% !important;
display: grid !important;
grid-template-columns: repeat(5, 1fr) !important;
gap: 16px !important;
padding: 16px !important;
}
.gallery-container {
background: rgba(255, 255, 255, 0.05);
border-radius: 8px;
margin-top: 10px;
width: 100% !important;
box-sizing: border-box !important;
}
/* Force gallery items to maintain aspect ratio */
.gallery-item {
width: 100% !important;
aspect-ratio: 1 !important;
overflow: hidden !important;
border-radius: 4px !important;
}
.gallery-item img {
width: 100% !important;
height: 100% !important;
object-fit: cover !important;
border-radius: 4px !important;
transition: transform 0.2s;
}
.gallery-item img:hover {
transform: scale(1.05);
}
/* Force output image container to full width */
.output-image {
width: 100% !important;
max-width: 100% !important;
}
/* Force container widths */
.contain > div {
width: 100% !important;
max-width: 100% !important;
}
.fixed-width {
width: 100% !important;
max-width: 100% !important;
}
/* Remove any horizontal scrolling */
.gallery-container::-webkit-scrollbar {
display: none !important;
}
.gallery-container {
-ms-overflow-style: none !important;
scrollbar-width: none !important;
}
/* Ensure consistent sizing for gallery wrapper */
#gallery > div {
width: 100% !important;
max-width: 100% !important;
}
#gallery > div > div {
width: 100% !important;
max-width: 100% !important;
}
"""
def save_image(image):
"""Save the generated image and return the path"""
try:
# Ensure gallery directory exists
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
# Generate unique filename with timestamp and random suffix
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
if not os.path.exists(filepath):
print(f"Warning: Failed to verify saved image at {filepath}")
return None
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def load_gallery():
"""Load all images from the gallery directory"""
try:
# Ensure gallery directory exists
os.makedirs(gallery_path, exist_ok=True)
# Get all image files and sort by modification time
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
# Sort by modification time (newest first)
image_files.sort(key=lambda x: x[1], reverse=True)
# Return only the file paths
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โœจ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4, elem_classes=["fixed-width"]):
# Current generated image
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"]
)
# Gallery of generated images
gallery = gr.Gallery(
label="Generated Images Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="cover",
elem_classes=["gallery-container", "fixed-width"]
)
# Load existing gallery images on startup
gallery.value = load_gallery()
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
# Save the generated image
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
# Return both the generated image and updated gallery
return generated_image, load_gallery()
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None, load_gallery()
# Connect the generation button to both the image output and gallery update
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output, gallery]
)
# Add randomize seed button functionality
randomize_seed.click(
update_seed,
outputs=[seed]
)
# Also randomize seed after each generation
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR])