|
import comfy.model_patcher |
|
import comfy.samplers |
|
import re |
|
|
|
|
|
class SkipLayerGuidanceDiT: |
|
''' |
|
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. |
|
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) |
|
Original experimental implementation for SD3 by Dango233@StabilityAI. |
|
''' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"model": ("MODEL", ), |
|
"double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), |
|
"single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), |
|
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), |
|
"start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}) |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "skip_guidance" |
|
EXPERIMENTAL = True |
|
|
|
DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model." |
|
|
|
CATEGORY = "advanced/guidance" |
|
|
|
def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers=""): |
|
|
|
def skip(args, extra_args): |
|
return args |
|
|
|
model_sampling = model.get_model_object("model_sampling") |
|
sigma_start = model_sampling.percent_to_sigma(start_percent) |
|
sigma_end = model_sampling.percent_to_sigma(end_percent) |
|
|
|
double_layers = re.findall(r'\d+', double_layers) |
|
double_layers = [int(i) for i in double_layers] |
|
|
|
single_layers = re.findall(r'\d+', single_layers) |
|
single_layers = [int(i) for i in single_layers] |
|
|
|
if len(double_layers) == 0 and len(single_layers) == 0: |
|
return (model, ) |
|
|
|
def post_cfg_function(args): |
|
model = args["model"] |
|
cond_pred = args["cond_denoised"] |
|
cond = args["cond"] |
|
cfg_result = args["denoised"] |
|
sigma = args["sigma"] |
|
x = args["input"] |
|
model_options = args["model_options"].copy() |
|
|
|
for layer in double_layers: |
|
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer) |
|
|
|
for layer in single_layers: |
|
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "single_block", layer) |
|
|
|
model_sampling.percent_to_sigma(start_percent) |
|
|
|
sigma_ = sigma[0].item() |
|
if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start: |
|
(slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) |
|
cfg_result = cfg_result + (cond_pred - slg) * scale |
|
return cfg_result |
|
|
|
m = model.clone() |
|
m.set_model_sampler_post_cfg_function(post_cfg_function) |
|
|
|
return (m, ) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"SkipLayerGuidanceDiT": SkipLayerGuidanceDiT, |
|
} |
|
|