Spaces:
ginipick
/
Runtime error

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
12.6 kB
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import (
StyleModelLoader,
VAEEncode,
NODE_CLASS_MAPPINGS,
LoadImage,
CLIPVisionLoader,
SaveImage,
VAELoader,
CLIPVisionEncode,
DualCLIPLoader,
EmptyLatentImage,
VAEDecode,
UNETLoader,
CLIPTextEncode,
)
def main():
import_custom_nodes()
with torch.inference_mode():
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
intconstant_83 = intconstant.get_value(value=1024)
intconstant_84 = intconstant.get_value(value=1024)
dualcliploader = DualCLIPLoader()
dualcliploader_357 = dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
)
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
cr_clip_input_switch_319 = cr_clip_input_switch.switch(
Input=1,
clip1=get_value_at_index(dualcliploader_357, 0),
clip2=get_value_at_index(dualcliploader_357, 0),
)
cliptextencode = CLIPTextEncode()
cliptextencode_174 = cliptextencode.encode(
text="a girl looking at a house on fire",
clip=get_value_at_index(cr_clip_input_switch_319, 0),
)
cliptextencode_175 = cliptextencode.encode(
text="", clip=get_value_at_index(cr_clip_input_switch_319, 0)
)
loadimage = LoadImage()
loadimage_429 = loadimage.load_image(
image="7038548d-d204-4810-bb74-d1dea277200a.png"
)
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
imageresize_72 = imageresize.execute(
width=get_value_at_index(intconstant_83, 0),
height=get_value_at_index(intconstant_84, 0),
interpolation="bicubic",
method="keep proportion",
condition="always",
multiple_of=16,
image=get_value_at_index(loadimage_429, 0),
)
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
getimagesizeandcount_360 = getimagesizeandcount.getsize(
image=get_value_at_index(imageresize_72, 0)
)
vaeloader = VAELoader()
vaeloader_359 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
vaeencode = VAEEncode()
vaeencode_197 = vaeencode.encode(
pixels=get_value_at_index(getimagesizeandcount_360, 0),
vae=get_value_at_index(vaeloader_359, 0),
)
unetloader = UNETLoader()
unetloader_358 = unetloader.load_unet(
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler")
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
fluxguidance_430 = fluxguidance.append(
guidance=15, conditioning=get_value_at_index(cliptextencode_174, 0)
)
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[
"DownloadAndLoadDepthAnythingV2Model"
]()
downloadandloaddepthanythingv2model_437 = (
downloadandloaddepthanythingv2model.loadmodel(
model="depth_anything_v2_vitl_fp32.safetensors"
)
)
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
depthanything_v2_436 = depthanything_v2.process(
da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0),
images=get_value_at_index(getimagesizeandcount_360, 0),
)
instructpixtopixconditioning = NODE_CLASS_MAPPINGS[
"InstructPixToPixConditioning"
]()
instructpixtopixconditioning_431 = instructpixtopixconditioning.encode(
positive=get_value_at_index(fluxguidance_430, 0),
negative=get_value_at_index(cliptextencode_175, 0),
vae=get_value_at_index(vaeloader_359, 0),
pixels=get_value_at_index(depthanything_v2_436, 0),
)
clipvisionloader = CLIPVisionLoader()
clipvisionloader_438 = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
loadimage_440 = loadimage.load_image(
image="2013_CKS_01180_0005_000(the_court_of_pir_budaq_shiraz_iran_circa_1455-60074106).jpg"
)
clipvisionencode = CLIPVisionEncode()
clipvisionencode_439 = clipvisionencode.encode(
crop="center",
clip_vision=get_value_at_index(clipvisionloader_438, 0),
image=get_value_at_index(loadimage_440, 0),
)
stylemodelloader = StyleModelLoader()
stylemodelloader_441 = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
cr_text_456 = cr_text.text_multiline(text="Flux_BFL_Depth_Redux")
emptylatentimage = EmptyLatentImage()
cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[
"CR Conditioning Input Switch"
]()
cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
saveimage = SaveImage()
imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]()
for q in range(10):
emptylatentimage_10 = emptylatentimage.generate(
width=get_value_at_index(imageresize_72, 1),
height=get_value_at_index(imageresize_72, 2),
batch_size=1,
)
cr_conditioning_input_switch_271 = cr_conditioning_input_switch.switch(
Input=1,
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 0),
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0),
)
cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch(
Input=1,
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1),
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1),
)
cr_model_input_switch_320 = cr_model_input_switch.switch(
Input=1,
model1=get_value_at_index(unetloader_358, 0),
model2=get_value_at_index(unetloader_358, 0),
)
stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel(
strength=0.5,
conditioning=get_value_at_index(instructpixtopixconditioning_431, 0),
style_model=get_value_at_index(stylemodelloader_441, 0),
clip_vision_output=get_value_at_index(clipvisionencode_439, 0),
)
basicguider_366 = basicguider.get_guider(
model=get_value_at_index(cr_model_input_switch_320, 0),
conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0),
)
basicscheduler_364 = basicscheduler.get_sigmas(
scheduler="simple",
steps=28,
denoise=1,
model=get_value_at_index(cr_model_input_switch_320, 0),
)
samplercustomadvanced_362 = samplercustomadvanced.sample(
noise=get_value_at_index(randomnoise_365, 0),
guider=get_value_at_index(basicguider_366, 0),
sampler=get_value_at_index(ksamplerselect_363, 0),
sigmas=get_value_at_index(basicscheduler_364, 0),
latent_image=get_value_at_index(emptylatentimage_10, 0),
)
vaedecode_321 = vaedecode.decode(
samples=get_value_at_index(samplercustomadvanced_362, 0),
vae=get_value_at_index(vaeloader_359, 0),
)
saveimage_327 = saveimage.save_images(
filename_prefix=get_value_at_index(cr_text_456, 0),
images=get_value_at_index(vaedecode_321, 0),
)
fluxguidance_382 = fluxguidance.append(
guidance=4,
conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0),
)
imagecrop_447 = imagecrop.execute(
width=2000,
height=2000,
position="top-center",
x_offset=0,
y_offset=0,
image=get_value_at_index(loadimage_440, 0),
)
if __name__ == "__main__":
main()