|
import os
|
|
import re
|
|
from nodes import MAX_RESOLUTION
|
|
from comfy_extras.nodes_clip_sdxl import CLIPTextEncodeSDXL
|
|
|
|
from .log import log_node_warn, log_node_info, log_node_success
|
|
from .constants import get_category, get_name
|
|
from .power_prompt_utils import get_and_strip_loras
|
|
from nodes import LoraLoader, CLIPTextEncode
|
|
import folder_paths
|
|
|
|
NODE_NAME = get_name('SDXL Power Prompt - Positive')
|
|
|
|
|
|
class RgthreeSDXLPowerPromptPositive:
|
|
"""The Power Prompt for positive conditioning."""
|
|
|
|
NAME = NODE_NAME
|
|
CATEGORY = get_category()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
SAVED_PROMPTS_FILES = folder_paths.get_filename_list('saved_prompts')
|
|
SAVED_PROMPTS_CONTENT = []
|
|
for filename in SAVED_PROMPTS_FILES:
|
|
with open(folder_paths.get_full_path('saved_prompts', filename), 'r') as f:
|
|
SAVED_PROMPTS_CONTENT.append(f.read())
|
|
return {
|
|
'required': {
|
|
'prompt_g': ('STRING', {
|
|
'multiline': True
|
|
}),
|
|
'prompt_l': ('STRING', {
|
|
'multiline': True
|
|
}),
|
|
},
|
|
'optional': {
|
|
"opt_model": ("MODEL",),
|
|
"opt_clip": ("CLIP",),
|
|
"opt_clip_width": ("INT", {
|
|
"forceInput": True,
|
|
"default": 1024.0,
|
|
"min": 0,
|
|
"max": MAX_RESOLUTION
|
|
}),
|
|
"opt_clip_height": ("INT", {
|
|
"forceInput": True,
|
|
"default": 1024.0,
|
|
"min": 0,
|
|
"max": MAX_RESOLUTION
|
|
}),
|
|
'insert_lora': (['CHOOSE', 'DISABLE LORAS'] +
|
|
[os.path.splitext(x)[0] for x in folder_paths.get_filename_list('loras')],),
|
|
'insert_embedding': ([
|
|
'CHOOSE',
|
|
] + [os.path.splitext(x)[0] for x in folder_paths.get_filename_list('embeddings')],),
|
|
'insert_saved': ([
|
|
'CHOOSE',
|
|
] + SAVED_PROMPTS_FILES,),
|
|
|
|
"target_width": ("INT", {
|
|
"default": -1,
|
|
"min": -1,
|
|
"max": MAX_RESOLUTION
|
|
}),
|
|
"target_height": ("INT", {
|
|
"default": -1,
|
|
"min": -1,
|
|
"max": MAX_RESOLUTION
|
|
}),
|
|
"crop_width": ("INT", {
|
|
"default": -1,
|
|
"min": -1,
|
|
"max": MAX_RESOLUTION
|
|
}),
|
|
"crop_height": ("INT", {
|
|
"default": -1,
|
|
"min": -1,
|
|
"max": MAX_RESOLUTION
|
|
}),
|
|
},
|
|
'hidden': {
|
|
'values_insert_saved': (['CHOOSE'] + SAVED_PROMPTS_CONTENT,),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ('CONDITIONING', 'MODEL', 'CLIP', 'STRING', 'STRING')
|
|
RETURN_NAMES = ('CONDITIONING', 'MODEL', 'CLIP', 'TEXT_G', 'TEXT_L')
|
|
FUNCTION = 'main'
|
|
|
|
def main(self,
|
|
prompt_g,
|
|
prompt_l,
|
|
opt_model=None,
|
|
opt_clip=None,
|
|
opt_clip_width=None,
|
|
opt_clip_height=None,
|
|
insert_lora=None,
|
|
insert_embedding=None,
|
|
insert_saved=None,
|
|
target_width=-1,
|
|
target_height=-1,
|
|
crop_width=-1,
|
|
crop_height=-1,
|
|
values_insert_saved=None):
|
|
|
|
if insert_lora == 'DISABLE LORAS':
|
|
prompt_g, loras_g, _skipped, _unfound = get_and_strip_loras(prompt_g,
|
|
True,
|
|
log_node=self.NAME)
|
|
prompt_l, loras_l, _skipped, _unfound = get_and_strip_loras(prompt_l,
|
|
True,
|
|
log_node=self.NAME)
|
|
loras = loras_g + loras_l
|
|
log_node_info(
|
|
NODE_NAME,
|
|
f'Disabling all found loras ({len(loras)}) and stripping lora tags for TEXT output.')
|
|
elif opt_model is not None and opt_clip is not None:
|
|
prompt_g, loras_g, _skipped, _unfound = get_and_strip_loras(prompt_g, log_node=self.NAME)
|
|
prompt_l, loras_l, _skipped, _unfound = get_and_strip_loras(prompt_l, log_node=self.NAME)
|
|
loras = loras_g + loras_l
|
|
if len(loras) > 0:
|
|
for lora in loras:
|
|
opt_model, opt_clip = LoraLoader().load_lora(opt_model, opt_clip, lora['lora'],
|
|
lora['strength'], lora['strength'])
|
|
log_node_success(NODE_NAME, f'Loaded "{lora["lora"]}" from prompt')
|
|
log_node_info(NODE_NAME, f'{len(loras)} Loras processed; stripping tags for TEXT output.')
|
|
elif '<lora:' in prompt_g or '<lora:' in prompt_l:
|
|
_prompt_g, loras_g, _skipped, _unfound = get_and_strip_loras(prompt_g,
|
|
True,
|
|
log_node=self.NAME)
|
|
_prompt_l, loras_l, _skipped, _unfound = get_and_strip_loras(prompt_l,
|
|
True,
|
|
log_node=self.NAME)
|
|
loras = loras_g + loras_l
|
|
if len(loras):
|
|
log_node_warn(
|
|
NODE_NAME, f'Found {len(loras)} lora tags in prompt but model & clip were not supplied!')
|
|
log_node_info(NODE_NAME, 'Loras not processed, keeping for TEXT output.')
|
|
|
|
conditioning = self.get_conditioning(prompt_g, prompt_l, opt_clip, opt_clip_width,
|
|
opt_clip_height, target_width, target_height, crop_width,
|
|
crop_height)
|
|
|
|
return (conditioning, opt_model, opt_clip, prompt_g, prompt_l)
|
|
|
|
def get_conditioning(self, prompt_g, prompt_l, opt_clip, opt_clip_width, opt_clip_height,
|
|
target_width, target_height, crop_width, crop_height):
|
|
"""Checks the inputs and gets the conditioning."""
|
|
conditioning = None
|
|
if opt_clip is not None:
|
|
do_regular_clip_text_encode = opt_clip_width and opt_clip_height
|
|
if do_regular_clip_text_encode:
|
|
target_width = target_width if target_width and target_width > 0 else opt_clip_width
|
|
target_height = target_height if target_height and target_height > 0 else opt_clip_height
|
|
crop_width = crop_width if crop_width and crop_width > 0 else 0
|
|
crop_height = crop_height if crop_height and crop_height > 0 else 0
|
|
try:
|
|
conditioning = CLIPTextEncodeSDXL().encode(opt_clip, opt_clip_width, opt_clip_height,
|
|
crop_width, crop_height, target_width,
|
|
target_height, prompt_g, prompt_l)[0]
|
|
except Exception:
|
|
do_regular_clip_text_encode = True
|
|
log_node_info(
|
|
self.NAME,
|
|
'Exception while attempting to CLIPTextEncodeSDXL, will fall back to standard encoding.'
|
|
)
|
|
else:
|
|
log_node_info(
|
|
self.NAME,
|
|
'CLIP supplied, but not CLIP_WIDTH and CLIP_HEIGHT. Text encoding will use standard ' +
|
|
'encoding with prompt_g and prompt_l concatenated.')
|
|
|
|
if not do_regular_clip_text_encode:
|
|
conditioning = CLIPTextEncode().encode(
|
|
opt_clip, f'{prompt_g if prompt_g else ""}\n{prompt_l if prompt_l else ""}')[0]
|
|
return conditioning
|
|
|