|
|
|
|
|
from dataclasses import dataclass |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
|
|
from .layers import ( |
|
DoubleStreamBlock, |
|
EmbedND, |
|
LastLayer, |
|
MLPEmbedder, |
|
SingleStreamBlock, |
|
timestep_embedding, |
|
) |
|
|
|
from einops import rearrange, repeat |
|
import comfy.ldm.common_dit |
|
|
|
@dataclass |
|
class FluxParams: |
|
in_channels: int |
|
out_channels: int |
|
vec_in_dim: int |
|
context_in_dim: int |
|
hidden_size: int |
|
mlp_ratio: float |
|
num_heads: int |
|
depth: int |
|
depth_single_blocks: int |
|
axes_dim: list |
|
theta: int |
|
patch_size: int |
|
qkv_bias: bool |
|
guidance_embed: bool |
|
|
|
|
|
class Flux(nn.Module): |
|
""" |
|
Transformer model for flow matching on sequences. |
|
""" |
|
|
|
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): |
|
super().__init__() |
|
self.dtype = dtype |
|
params = FluxParams(**kwargs) |
|
self.params = params |
|
self.patch_size = params.patch_size |
|
self.in_channels = params.in_channels * params.patch_size * params.patch_size |
|
self.out_channels = params.out_channels * params.patch_size * params.patch_size |
|
if params.hidden_size % params.num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" |
|
) |
|
pe_dim = params.hidden_size // params.num_heads |
|
if sum(params.axes_dim) != pe_dim: |
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = params.hidden_size |
|
self.num_heads = params.num_heads |
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) |
|
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) |
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) |
|
self.guidance_in = ( |
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() |
|
) |
|
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
qkv_bias=params.qkv_bias, |
|
dtype=dtype, device=device, operations=operations |
|
) |
|
for _ in range(params.depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) |
|
for _ in range(params.depth_single_blocks) |
|
] |
|
) |
|
|
|
if final_layer: |
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) |
|
|
|
def forward_orig( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
guidance: Tensor = None, |
|
control=None, |
|
transformer_options={}, |
|
) -> Tensor: |
|
patches_replace = transformer_options.get("patches_replace", {}) |
|
if img.ndim != 3 or txt.ndim != 3: |
|
raise ValueError("Input img and txt tensors must have 3 dimensions.") |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) |
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) |
|
|
|
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim]) |
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
blocks_replace = patches_replace.get("dit", {}) |
|
for i, block in enumerate(self.double_blocks): |
|
if ("double_block", i) in blocks_replace: |
|
def block_wrap(args): |
|
out = {} |
|
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"]) |
|
return out |
|
|
|
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe}, {"original_block": block_wrap}) |
|
txt = out["txt"] |
|
img = out["img"] |
|
else: |
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) |
|
|
|
if control is not None: |
|
control_i = control.get("input") |
|
if i < len(control_i): |
|
add = control_i[i] |
|
if add is not None: |
|
img += add |
|
|
|
img = torch.cat((txt, img), 1) |
|
|
|
for i, block in enumerate(self.single_blocks): |
|
if ("single_block", i) in blocks_replace: |
|
def block_wrap(args): |
|
out = {} |
|
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"]) |
|
return out |
|
|
|
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe}, {"original_block": block_wrap}) |
|
img = out["img"] |
|
else: |
|
img = block(img, vec=vec, pe=pe) |
|
|
|
if control is not None: |
|
control_o = control.get("output") |
|
if i < len(control_o): |
|
add = control_o[i] |
|
if add is not None: |
|
img[:, txt.shape[1] :, ...] += add |
|
|
|
img = img[:, txt.shape[1] :, ...] |
|
|
|
img = self.final_layer(img, vec) |
|
return img |
|
|
|
def forward(self, x, timestep, context, y, guidance, control=None, transformer_options={}, **kwargs): |
|
bs, c, h, w = x.shape |
|
patch_size = self.patch_size |
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) |
|
|
|
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size) |
|
|
|
h_len = ((h + (patch_size // 2)) // patch_size) |
|
w_len = ((w + (patch_size // 2)) // patch_size) |
|
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) |
|
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) |
|
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) |
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) |
|
|
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) |
|
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options) |
|
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w] |
|
|