Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
4.06 kB
from math import ceil, sqrt
from typing import cast
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from ..utils import hex_to_rgb, log, pil2tensor, tensor2pil
class MTB_TransformImage:
"""Save torch tensors (image, mask or latent) to disk, useful to debug things outside comfy
it return a tensor representing the transformed images with the same shape as the input tensor
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"x": (
"FLOAT",
{"default": 0, "step": 1, "min": -4096, "max": 4096},
),
"y": (
"FLOAT",
{"default": 0, "step": 1, "min": -4096, "max": 4096},
),
"zoom": (
"FLOAT",
{"default": 1.0, "min": 0.001, "step": 0.01},
),
"angle": (
"FLOAT",
{"default": 0, "step": 1, "min": -360, "max": 360},
),
"shear": (
"FLOAT",
{"default": 0, "step": 1, "min": -4096, "max": 4096},
),
"border_handling": (
["edge", "constant", "reflect", "symmetric"],
{"default": "edge"},
),
"constant_color": ("COLOR", {"default": "#000000"}),
},
}
FUNCTION = "transform"
RETURN_TYPES = ("IMAGE",)
CATEGORY = "mtb/transform"
def transform(
self,
image: torch.Tensor,
x: float,
y: float,
zoom: float,
angle: float,
shear: float,
border_handling="edge",
constant_color=None,
):
x = int(x)
y = int(y)
angle = int(angle)
log.debug(
f"Zoom: {zoom} | x: {x}, y: {y}, angle: {angle}, shear: {shear}"
)
if image.size(0) == 0:
return (torch.zeros(0),)
transformed_images = []
frames_count, frame_height, frame_width, frame_channel_count = (
image.size()
)
new_height, new_width = (
int(frame_height * zoom),
int(frame_width * zoom),
)
log.debug(f"New height: {new_height}, New width: {new_width}")
# - Calculate diagonal of the original image
diagonal = sqrt(frame_width**2 + frame_height**2)
max_padding = ceil(diagonal * zoom - min(frame_width, frame_height))
# Calculate padding for zoom
pw = int(frame_width - new_width)
ph = int(frame_height - new_height)
pw += abs(max_padding)
ph += abs(max_padding)
padding = [
max(0, pw + x),
max(0, ph + y),
max(0, pw - x),
max(0, ph - y),
]
constant_color = hex_to_rgb(constant_color)
log.debug(f"Fill Tuple: {constant_color}")
for img in tensor2pil(image):
img = TF.pad(
img, # transformed_frame,
padding=padding,
padding_mode=border_handling,
fill=constant_color or 0,
)
img = cast(
Image.Image,
TF.affine(
img, angle=angle, scale=zoom, translate=[x, y], shear=shear
),
)
left = abs(padding[0])
upper = abs(padding[1])
right = img.width - abs(padding[2])
bottom = img.height - abs(padding[3])
# log.debug("crop is [:,top:bottom, left:right] for tensors")
log.debug("crop is [left, top, right, bottom] for PIL")
log.debug(f"crop is {left}, {upper}, {right}, {bottom}")
img = img.crop((left, upper, right, bottom))
transformed_images.append(img)
return (pil2tensor(transformed_images),)
__nodes__ = [MTB_TransformImage]