Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
4.56 kB
import copy
import torch
from torch.nn import functional as F
from torch.nn.modules.utils import _pair
from ..log import log
class MTB_VaeDecode:
"""Wrapper for the 2 core decoders but also adding the sd seamless hack, taken from: FlyingFireCo/tiled_ksampler"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"samples": ("LATENT",),
"vae": ("VAE",),
"seamless_model": ("BOOLEAN", {"default": False}),
"use_tiling_decoder": ("BOOLEAN", {"default": True}),
"tile_size": (
"INT",
{"default": 512, "min": 320, "max": 4096, "step": 64},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "mtb/decode"
def decode(
self,
vae,
samples,
seamless_model,
use_tiling_decoder=True,
tile_size=512,
):
if seamless_model:
if use_tiling_decoder:
log.error(
"You cannot use seamless mode with tiling decoder together, skipping tiling."
)
use_tiling_decoder = False
for layer in [
layer
for layer in vae.first_stage_model.modules()
if isinstance(layer, torch.nn.Conv2d)
]:
layer.padding_mode = "circular"
if use_tiling_decoder:
return (
vae.decode_tiled(
samples["samples"],
tile_x=tile_size // 8,
tile_y=tile_size // 8,
),
)
else:
return (vae.decode(samples["samples"]),)
def conv_forward(lyr, tensor, weight, bias):
step = lyr.timestep
if (lyr.paddingStartStep < 0 or step >= lyr.paddingStartStep) and (
lyr.paddingStopStep < 0 or step <= lyr.paddingStopStep
):
working = F.pad(tensor, lyr.paddingX, mode=lyr.padding_modeX)
working = F.pad(working, lyr.paddingY, mode=lyr.padding_modeY)
else:
working = F.pad(tensor, lyr.paddingX, mode="constant")
working = F.pad(working, lyr.paddingY, mode="constant")
lyr.timestep += 1
return F.conv2d(
working, weight, bias, lyr.stride, _pair(0), lyr.dilation, lyr.groups
)
class MTB_ModelPatchSeamless:
"""Uses the stable diffusion 'hack' to infer seamless images by setting the model layers padding mode to circular (experimental)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"startStep": ("INT", {"default": 0}),
"stopStep": ("INT", {"default": 999}),
"tilingX": (
"BOOLEAN",
{"default": True},
),
"tilingY": (
"BOOLEAN",
{"default": True},
),
}
}
RETURN_TYPES = ("MODEL", "MODEL")
RETURN_NAMES = (
"Original Model (passthrough)",
"Patched Model",
)
FUNCTION = "hack"
CATEGORY = "mtb/textures"
def apply_circular(self, model, startStep, stopStep, x, y):
for layer in [
layer
for layer in model.modules()
if isinstance(layer, torch.nn.Conv2d)
]:
layer.padding_modeX = "circular" if x else "constant"
layer.padding_modeY = "circular" if y else "constant"
layer.paddingX = (
layer._reversed_padding_repeated_twice[0],
layer._reversed_padding_repeated_twice[1],
0,
0,
)
layer.paddingY = (
0,
0,
layer._reversed_padding_repeated_twice[2],
layer._reversed_padding_repeated_twice[3],
)
layer.paddingStartStep = startStep
layer.paddingStopStep = stopStep
layer.timestep = 0
layer._conv_forward = conv_forward.__get__(layer, torch.nn.Conv2d)
return model
def hack(
self,
model,
startStep,
stopStep,
tilingX,
tilingY,
):
hacked_model = copy.deepcopy(model)
self.apply_circular(
hacked_model.model, startStep, stopStep, tilingX, tilingY
)
return (model, hacked_model)
__nodes__ = [MTB_ModelPatchSeamless, MTB_VaeDecode]