Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
19.9 kB
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes
# for ComfyUI https://github.com/comfyanonymous/ComfyUI
#---------------------------------------------------------------------------------------------------------------------#
import os
import sys
import comfy.sd
import comfy.utils
import folder_paths
import hashlib
from random import random, uniform
from ..categories import icons
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
#---------------------------------------------------------------------------------------------------------------------#
# LoRA Nodes
#---------------------------------------------------------------------------------------------------------------------#
# This is a load lora node with an added switch to turn on or off. On will add the lora and off will skip the node.
class CR_LoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
file_list = folder_paths.get_filename_list("loras")
file_list.insert(0, "None")
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"switch": (["On","Off"],),
"lora_name": (file_list, ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP", "STRING", )
RETURN_NAMES = ("MODEL", "CLIP", "show_help", )
FUNCTION = "load_lora"
CATEGORY = icons.get("Comfyroll/LoRA")
def load_lora(self, model, clip, switch, lora_name, strength_model, strength_clip):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-load-lora"
if strength_model == 0 and strength_clip == 0:
return (model, clip, show_help, )
if switch == "Off" or lora_name == "None":
return (model, clip, show_help, )
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
del self.loaded_lora
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
# Based on Efficiency Nodes
# This is a lora stack where a single node has 3 different loras each with their own switch
class CR_LoRAStack:
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
return {"required": {
"switch_1": (["Off","On"],),
"lora_name_1": (loras,),
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"switch_2": (["Off","On"],),
"lora_name_2": (loras,),
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"switch_3": (["Off","On"],),
"lora_name_3": (loras,),
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"lora_stack": ("LORA_STACK",)
},
}
RETURN_TYPES = ("LORA_STACK", "STRING", )
RETURN_NAMES = ("LORA_STACK", "show_help", )
FUNCTION = "lora_stacker"
CATEGORY = icons.get("Comfyroll/LoRA")
def lora_stacker(self, lora_name_1, model_weight_1, clip_weight_1, switch_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, lora_stack=None):
# Initialise the list
lora_list=list()
if lora_stack is not None:
lora_list.extend([l for l in lora_stack if l[0] != "None"])
if lora_name_1 != "None" and switch_1 == "On":
lora_list.extend([(lora_name_1, model_weight_1, clip_weight_1)]),
if lora_name_2 != "None" and switch_2 == "On":
lora_list.extend([(lora_name_2, model_weight_2, clip_weight_2)]),
if lora_name_3 != "None" and switch_3 == "On":
lora_list.extend([(lora_name_3, model_weight_3, clip_weight_3)]),
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-lora-stack"
return (lora_list, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
# This applies the lora stack.
class CR_ApplyLoRAStack:
@classmethod
def INPUT_TYPES(cls):
return {"required": {"model": ("MODEL",),
"clip": ("CLIP", ),
"lora_stack": ("LORA_STACK", ),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "STRING", )
RETURN_NAMES = ("MODEL", "CLIP", "show_help", )
FUNCTION = "apply_lora_stack"
CATEGORY = icons.get("Comfyroll/LoRA")
def apply_lora_stack(self, model, clip, lora_stack=None,):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-apply-lora-stack"
# Initialise the list
lora_params = list()
# Extend lora_params with lora-stack items
if lora_stack:
lora_params.extend(lora_stack)
else:
return (model, clip, show_help,)
# Initialise the model and clip
model_lora = model
clip_lora = clip
# Loop through the list
for tup in lora_params:
lora_name, strength_model, strength_clip = tup
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model_lora, clip_lora, lora, strength_model, strength_clip)
return (model_lora, clip_lora, show_help,)
#---------------------------------------------------------------------------------------------------------------------#
# This is adds to a LoRA stack chain, which produces a LoRA instance with a randomized weight within a range.
# Stride sets the number of iterations before weight is re-randomized.
class CR_RandomWeightLoRA:
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
return {"required": {
"stride": (("INT", {"default": 1, "min": 1, "max": 1000})),
"force_randomize_after_stride": (["Off","On"],),
"lora_name": (loras,),
"switch": (["Off","On"],),
"weight_min": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"weight_max": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"lora_stack": ("LORA_STACK",)
},
}
RETURN_TYPES = ("LORA_STACK",)
FUNCTION = "random_weight_lora"
CATEGORY = icons.get("Comfyroll/LoRA")
LastWeightMap = {}
StridesMap = {}
LastHashMap = {}
@staticmethod
def getIdHash(lora_name: str, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) -> int:
fl_str = f"{lora_name}_{force_randomize_after_stride}_{stride}_{weight_min:.2f}_{weight_max:.2f}_{clip_weight:.2f}"
return hashlib.sha256(fl_str.encode('utf-8')).hexdigest()
@classmethod
def IS_CHANGED(cls, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None):
id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight)
if switch == "Off":
return id_hash + "_Off"
if lora_name == "None":
return id_hash
if id_hash not in CR_RandomWeightLoRA.StridesMap:
CR_RandomWeightLoRA.StridesMap[id_hash] = 0
CR_RandomWeightLoRA.StridesMap[id_hash] += 1
if stride > 1 and CR_RandomWeightLoRA.StridesMap[id_hash] < stride and id_hash in CR_RandomWeightLoRA.LastHashMap:
return CR_RandomWeightLoRA.LastHashMap[id_hash]
else:
CR_RandomWeightLoRA.StridesMap[id_hash] = 0
last_weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, None)
weight = uniform(weight_min, weight_max)
if last_weight is not None:
while weight == last_weight:
weight = uniform(weight_min, weight_max)
CR_RandomWeightLoRA.LastWeightMap[id_hash] = weight
hash_str = f"{id_hash}_{weight:.3f}"
CR_RandomWeightLoRA.LastHashMap[id_hash] = hash_str
return hash_str
def random_weight_lora(self, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None):
id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight)
# Initialise the list
lora_list=list()
if lora_stack is not None:
lora_list.extend([l for l in lora_stack if l[0] != "None"])
weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, 0.0)
if lora_name != "None" and switch == "On":
lora_list.extend([(lora_name, weight, clip_weight)]),
return (lora_list,)
#---------------------------------------------------------------------------------------------------------------------#
# This is a lora stack where a single node has 3 different loras which can be applied randomly. Exclusive mode causes only one lora to be applied.
# If exclusive mode is on, each LoRA's chance of being applied is evaluated, and the lora with the highest chance is applied
# Stride sets the minimum number of cycles before a re-randomization is performed.
class CR_RandomLoRAStack:
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
return {"required": {
"exclusive_mode": (["Off","On"],),
"stride": (("INT", {"default": 1, "min": 1, "max": 1000})),
"force_randomize_after_stride": (["Off","On"],),
"lora_name_1": (loras,),
"switch_1": (["Off","On"],),
"chance_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_2": (loras,),
"switch_2": (["Off","On"],),
"chance_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_3": (loras,),
"switch_3": (["Off","On"],),
"chance_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"lora_stack": ("LORA_STACK",)
},
}
RETURN_TYPES = ("LORA_STACK",)
FUNCTION = "random_lora_stacker"
CATEGORY = icons.get("Comfyroll/LoRA")
UsedLorasMap = {}
StridesMap = {}
LastHashMap = {}
@staticmethod
def getIdHash(lora_name_1: str, lora_name_2: str, lora_name_3: str) -> int:
id_set = set([lora_name_1, lora_name_2, lora_name_3])
id_hash = hash(frozenset(id_set))
return id_hash
@staticmethod
def deduplicateLoraNames(lora_name_1: str, lora_name_2: str, lora_name_3: str):
is_same_1 = False
is_same_2 = False
is_same_3 = False
if lora_name_1 == lora_name_2:
is_same_1 = True
is_same_2 = True
if lora_name_1 == lora_name_3:
is_same_1 = True
is_same_3 = True
if lora_name_2 == lora_name_3:
is_same_2 = True
is_same_3 = True
if is_same_1:
lora_name_1 = lora_name_1 + "CR_RandomLoRAStack_1"
if is_same_2:
lora_name_2 = lora_name_2 + "CR_RandomLoRAStack_2"
if is_same_3:
lora_name_3 = lora_name_3 + "CR_RandomLoRAStack_3"
return lora_name_1, lora_name_2, lora_name_3
@staticmethod
def cleanLoraName(lora_name) -> str:
if "CR_RandomLoRAStack_1" in lora_name:
lora_name = lora_name.replace("CR_RandomLoRAStack_1", "")
elif "CR_RandomLoRAStack_2" in lora_name:
lora_name = lora_name.replace("CR_RandomLoRAStack_2", "")
elif "CR_RandomLoRAStack_3" in lora_name:
lora_name = lora_name.replace("CR_RandomLoRAStack_3", "")
return lora_name
@classmethod
def IS_CHANGED(cls, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2,
model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None):
lora_set = set()
lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3)
id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3)
if id_hash not in CR_RandomLoRAStack.StridesMap:
CR_RandomLoRAStack.StridesMap[id_hash] = 0
CR_RandomLoRAStack.StridesMap[id_hash] += 1
if stride > 1 and CR_RandomLoRAStack.StridesMap[id_hash] < stride and id_hash in CR_RandomLoRAStack.LastHashMap:
return CR_RandomLoRAStack.LastHashMap[id_hash]
else:
CR_RandomLoRAStack.StridesMap[id_hash] = 0
total_on = 0
if lora_name_1 != "None" and switch_1 == "On" and chance_1 > 0.0: total_on += 1
if lora_name_2 != "None" and switch_2 == "On" and chance_2 > 0.0: total_on += 1
if lora_name_3 != "None" and switch_3 == "On" and chance_3 > 0.0: total_on += 1
def perform_randomization() -> set:
_lora_set = set()
rand_1 = random()
rand_2 = random()
rand_3 = random()
apply_1 = True if (rand_1 <= chance_1 and switch_1 == "On") else False
apply_2 = True if (rand_2 <= chance_2 and switch_2 == "On") else False
apply_3 = True if (rand_3 <= chance_3 and switch_3 == "On") else False
num_to_apply = sum([apply_1, apply_2, apply_3])
if exclusive_mode == "On" and num_to_apply > 1:
rand_dict = {}
if apply_1: rand_dict[1] = rand_1
if apply_2: rand_dict[2] = rand_2
if apply_3: rand_dict[3] = rand_3
sorted_rands = sorted(rand_dict.keys(), key=lambda k: rand_dict[k])
if sorted_rands[0] == 1:
apply_2 = False
apply_3 = False
elif sorted_rands[0] == 2:
apply_1 = False
apply_3 = False
elif sorted_rands[0] == 3:
apply_1 = False
apply_2 = False
if lora_name_1 != "None" and switch_1 == "On" and apply_1:
_lora_set.add(lora_name_1)
if lora_name_2 != "None" and switch_2 == "On" and apply_2:
_lora_set.add(lora_name_2)
if lora_name_3 != "None" and switch_3 == "On" and apply_3:
_lora_set.add(lora_name_3)
return _lora_set
last_lora_set = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set())
lora_set = perform_randomization()
if force_randomize_after_stride == "On" and len(last_lora_set) > 0 and total_on > 1:
while lora_set == last_lora_set:
lora_set = perform_randomization()
CR_RandomLoRAStack.UsedLorasMap[id_hash] = lora_set
hash_str = str(hash(frozenset(lora_set)))
CR_RandomLoRAStack.LastHashMap[id_hash] = hash_str
return hash_str
def random_lora_stacker(self, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2,
model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None):
# Initialise the list
lora_list=list()
if lora_stack is not None:
lora_list.extend([l for l in lora_stack if l[0] != "None"])
lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3)
id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3)
used_loras = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set())
if lora_name_1 != "None" and switch_1 == "On" and lora_name_1 in used_loras:
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_1), model_weight_1, clip_weight_1)]),
if lora_name_2 != "None" and switch_2 == "On" and lora_name_2 in used_loras:
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_2), model_weight_2, clip_weight_2)]),
if lora_name_3 != "None" and switch_3 == "On" and lora_name_3 in used_loras:
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_3), model_weight_3, clip_weight_3)]),
return (lora_list,)
#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
'''
NODE_CLASS_MAPPINGS = {
"CR Load LoRA": CR_LoraLoader,
"CR LoRA Stack":CR_LoRAStack,
"CR Apply LoRA Stack":CR_ApplyLoRAStack,
"CR Random LoRA Stack":CR_RandomLoRAStack,
"CR Random Weight LoRA":CR_RandomWeightLoRA,
}
'''