|
""" |
|
This file is part of ComfyUI. |
|
Copyright (C) 2024 Stability AI |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
""" |
|
|
|
import torch |
|
import torchvision |
|
from torch import nn |
|
from .common import LayerNorm2d_op |
|
|
|
|
|
class CNetResBlock(nn.Module): |
|
def __init__(self, c, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.blocks = nn.Sequential( |
|
LayerNorm2d_op(operations)(c, dtype=dtype, device=device), |
|
nn.GELU(), |
|
operations.Conv2d(c, c, kernel_size=3, padding=1), |
|
LayerNorm2d_op(operations)(c, dtype=dtype, device=device), |
|
nn.GELU(), |
|
operations.Conv2d(c, c, kernel_size=3, padding=1), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.blocks(x) |
|
|
|
|
|
class ControlNet(nn.Module): |
|
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn): |
|
super().__init__() |
|
if bottleneck_mode is None: |
|
bottleneck_mode = 'effnet' |
|
self.proj_blocks = proj_blocks |
|
if bottleneck_mode == 'effnet': |
|
embd_channels = 1280 |
|
self.backbone = torchvision.models.efficientnet_v2_s().features.eval() |
|
if c_in != 3: |
|
in_weights = self.backbone[0][0].weight.data |
|
self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device) |
|
if c_in > 3: |
|
|
|
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone() |
|
else: |
|
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone() |
|
elif bottleneck_mode == 'simple': |
|
embd_channels = c_in |
|
self.backbone = nn.Sequential( |
|
operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device), |
|
) |
|
elif bottleneck_mode == 'large': |
|
self.backbone = nn.Sequential( |
|
operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device), |
|
*[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)], |
|
operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device), |
|
) |
|
embd_channels = 1280 |
|
else: |
|
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}') |
|
self.projections = nn.ModuleList() |
|
for _ in range(len(proj_blocks)): |
|
self.projections.append(nn.Sequential( |
|
operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device), |
|
)) |
|
|
|
self.xl = False |
|
self.input_channels = c_in |
|
self.unshuffle_amount = 8 |
|
|
|
def forward(self, x): |
|
x = self.backbone(x) |
|
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)] |
|
for i, idx in enumerate(self.proj_blocks): |
|
proj_outputs[idx] = self.projections[i](x) |
|
return {"input": proj_outputs[::-1]} |
|
|