Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -82,12 +82,13 @@ torch.backends.cudnn.benchmark = True
|
|
82 |
|
83 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
84 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
85 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
86 |
os.environ['SPCONV_ALGO'] = 'native'
|
87 |
os.environ['SPARSE_BACKEND'] = 'native'
|
88 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
89 |
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
|
90 |
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
|
|
|
91 |
|
92 |
# CUDA ์ด๊ธฐํ ๋ฐฉ์ง
|
93 |
torch.set_grad_enabled(False)
|
@@ -205,6 +206,9 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
205 |
return None, None
|
206 |
|
207 |
try:
|
|
|
|
|
|
|
208 |
if randomize_seed:
|
209 |
seed = np.random.randint(0, MAX_SEED)
|
210 |
|
@@ -220,57 +224,82 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
220 |
|
221 |
# GPU ์์
์์
|
222 |
with torch.cuda.device(0):
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
outputs = g.trellis_pipeline.run(
|
228 |
-
image,
|
229 |
-
seed=seed,
|
230 |
-
formats=["gaussian", "mesh"],
|
231 |
-
preprocess_image=False,
|
232 |
-
sparse_structure_sampler_params={
|
233 |
-
"steps": ss_sampling_steps,
|
234 |
-
"cfg_strength": ss_guidance_strength,
|
235 |
-
},
|
236 |
-
slat_sampler_params={
|
237 |
-
"steps": slat_sampling_steps,
|
238 |
-
"cfg_strength": slat_guidance_strength,
|
239 |
-
},
|
240 |
-
)
|
241 |
-
|
242 |
-
# GPU์์ ๋น๋์ค ๋ ๋๋ง
|
243 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
244 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
245 |
-
|
246 |
-
# CPU๋ก ๋ฐ์ดํฐ ์ด๋
|
247 |
-
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video]
|
248 |
-
video_geo = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video_geo]
|
249 |
-
|
250 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
251 |
-
new_trial_id = str(uuid.uuid4())
|
252 |
-
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
|
253 |
-
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
254 |
-
imageio.mimsave(video_path, video, fps=15)
|
255 |
-
|
256 |
-
# ์ํ ์ ์ฅ ์ ์ CPU๋ก ์ด๋
|
257 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
|
258 |
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
g.trellis_pipeline.to('cpu')
|
261 |
torch.cuda.empty_cache()
|
262 |
-
|
263 |
-
return state, video_path
|
264 |
|
265 |
except Exception as e:
|
266 |
print(f"Error in image_to_3d: {str(e)}")
|
267 |
-
# ์๋ฌ ๋ฐ์
|
268 |
if hasattr(g.trellis_pipeline, 'to'):
|
269 |
g.trellis_pipeline.to('cpu')
|
270 |
torch.cuda.empty_cache()
|
|
|
271 |
return None, None
|
272 |
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
@spaces.GPU
|
275 |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
|
276 |
gs, mesh, trial_id = unpack_state(state)
|
|
|
82 |
|
83 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
84 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
85 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512,garbage_collection_threshold:0.6"
|
86 |
os.environ['SPCONV_ALGO'] = 'native'
|
87 |
os.environ['SPARSE_BACKEND'] = 'native'
|
88 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
89 |
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
|
90 |
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
|
91 |
+
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
|
92 |
|
93 |
# CUDA ์ด๊ธฐํ ๋ฐฉ์ง
|
94 |
torch.set_grad_enabled(False)
|
|
|
206 |
return None, None
|
207 |
|
208 |
try:
|
209 |
+
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ
|
210 |
+
torch.cuda.empty_cache()
|
211 |
+
|
212 |
if randomize_seed:
|
213 |
seed = np.random.randint(0, MAX_SEED)
|
214 |
|
|
|
224 |
|
225 |
# GPU ์์
์์
|
226 |
with torch.cuda.device(0):
|
227 |
+
try:
|
228 |
+
# ๋ชจ๋ธ์ GPU๋ก ์ด๋
|
229 |
+
g.trellis_pipeline.to('cuda')
|
230 |
+
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
with torch.inference_mode():
|
233 |
+
# ์ฒซ ๋ฒ์งธ ๋จ๊ณ: 3D ์์ฑ
|
234 |
+
outputs = g.trellis_pipeline.run(
|
235 |
+
image,
|
236 |
+
seed=seed,
|
237 |
+
formats=["gaussian", "mesh"],
|
238 |
+
preprocess_image=False,
|
239 |
+
sparse_structure_sampler_params={
|
240 |
+
"steps": ss_sampling_steps,
|
241 |
+
"cfg_strength": ss_guidance_strength,
|
242 |
+
},
|
243 |
+
slat_sampler_params={
|
244 |
+
"steps": slat_sampling_steps,
|
245 |
+
"cfg_strength": slat_guidance_strength,
|
246 |
+
},
|
247 |
+
)
|
248 |
+
torch.cuda.synchronize()
|
249 |
+
|
250 |
+
# ๋ ๋ฒ์งธ ๋จ๊ณ: ๋น๋์ค ๋ ๋๋ง
|
251 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
252 |
+
torch.cuda.synchronize()
|
253 |
+
|
254 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
255 |
+
torch.cuda.synchronize()
|
256 |
+
|
257 |
+
# CPU๋ก ๋ฐ์ดํฐ ์ด๋ ๋ฐ ํ์ฒ๋ฆฌ
|
258 |
+
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video]
|
259 |
+
video_geo = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video_geo]
|
260 |
+
|
261 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
262 |
+
new_trial_id = str(uuid.uuid4())
|
263 |
+
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
|
264 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
265 |
+
imageio.mimsave(video_path, video, fps=15)
|
266 |
+
|
267 |
+
# ์ํ ์ ์ฅ
|
268 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
|
269 |
+
|
270 |
+
return state, video_path
|
271 |
+
|
272 |
+
finally:
|
273 |
+
# ์ ๋ฆฌ ์์
|
274 |
g.trellis_pipeline.to('cpu')
|
275 |
torch.cuda.empty_cache()
|
276 |
+
torch.cuda.synchronize()
|
|
|
277 |
|
278 |
except Exception as e:
|
279 |
print(f"Error in image_to_3d: {str(e)}")
|
280 |
+
# ์๋ฌ ๋ฐ์ ์ ์ ๋ฆฌ
|
281 |
if hasattr(g.trellis_pipeline, 'to'):
|
282 |
g.trellis_pipeline.to('cpu')
|
283 |
torch.cuda.empty_cache()
|
284 |
+
torch.cuda.synchronize()
|
285 |
return None, None
|
286 |
|
287 |
+
def clear_gpu_memory():
|
288 |
+
"""GPU ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์ ๋ฆฌํ๋ ์ ํธ๋ฆฌํฐ ํจ์"""
|
289 |
+
if torch.cuda.is_available():
|
290 |
+
torch.cuda.empty_cache()
|
291 |
+
torch.cuda.synchronize()
|
292 |
+
|
293 |
+
def move_to_device(model, device):
|
294 |
+
"""๋ชจ๋ธ์ ์์ ํ๊ฒ ๋๋ฐ์ด์ค๋ก ์ด๋ํ๋ ํจ์"""
|
295 |
+
try:
|
296 |
+
if hasattr(model, 'to'):
|
297 |
+
model.to(device)
|
298 |
+
if device == 'cuda':
|
299 |
+
torch.cuda.synchronize()
|
300 |
+
except Exception as e:
|
301 |
+
print(f"Error moving model to {device}: {str(e)}")
|
302 |
+
|
303 |
@spaces.GPU
|
304 |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
|
305 |
gs, mesh, trial_id = unpack_state(state)
|