Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -32,47 +32,46 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
32 |
TMP_DIR = "/tmp/Trellis-demo"
|
33 |
os.makedirs(TMP_DIR, exist_ok=True)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def initialize_models():
|
36 |
global pipeline, translator, flux_pipe
|
37 |
|
38 |
try:
|
39 |
-
# Trellis ํ์ดํ๋ผ์ธ ์ด๊ธฐํ (
|
40 |
pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
41 |
"JeffreyXiang/TRELLIS-image-large",
|
42 |
-
|
43 |
-
low_cpu_mem_usage=True,
|
44 |
-
torch_dtype=torch.float16 # ๋ฐ์ ๋ฐ๋ ์ฌ์ฉ
|
45 |
)
|
46 |
|
47 |
-
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
48 |
translator = translation_pipeline(
|
49 |
"translation",
|
50 |
model="Helsinki-NLP/opus-mt-ko-en",
|
51 |
device="cpu",
|
52 |
-
model_kwargs={
|
53 |
-
"low_cpu_mem_usage": True,
|
54 |
-
"torch_dtype": torch.float16
|
55 |
-
}
|
56 |
)
|
57 |
|
58 |
-
# Flux ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
59 |
flux_pipe = FluxPipeline.from_pretrained(
|
60 |
"black-forest-labs/FLUX.1-dev",
|
61 |
-
|
62 |
-
low_cpu_mem_usage=True,
|
63 |
-
torch_dtype=torch.float16,
|
64 |
-
variant="fp16"
|
65 |
)
|
66 |
|
67 |
-
# ๋ถํ์ํ ์บ์ ์ ๋ฆฌ
|
68 |
-
free_memory()
|
69 |
-
|
70 |
print("Models initialized successfully")
|
71 |
return True
|
72 |
|
73 |
except Exception as e:
|
74 |
print(f"Model initialization error: {str(e)}")
|
75 |
-
free_memory()
|
76 |
return False
|
77 |
|
78 |
def translate_if_korean(text):
|
@@ -144,16 +143,15 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
144 |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
|
145 |
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
|
146 |
try:
|
147 |
-
|
|
|
|
|
148 |
|
149 |
if randomize_seed:
|
150 |
seed = np.random.randint(0, MAX_SEED)
|
151 |
|
152 |
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
|
153 |
|
154 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ์ ํ
|
155 |
-
torch.cuda.set_per_process_memory_fraction(0.6)
|
156 |
-
|
157 |
# ๋ ์์ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ฌ์ฉ
|
158 |
max_size = 512
|
159 |
if max(input_image.size) > max_size:
|
@@ -181,7 +179,6 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
181 |
}
|
182 |
)
|
183 |
|
184 |
-
# ๋ ์ ์ ํ๋ ์์ผ๋ก ๋น๋์ค ์์ฑ
|
185 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=30)['color']
|
186 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=30)['normal']
|
187 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
@@ -193,12 +190,14 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
193 |
|
194 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
195 |
|
196 |
-
|
|
|
|
|
197 |
return state, video_path
|
198 |
|
199 |
except Exception as e:
|
200 |
print(f"Error in image_to_3d: {str(e)}")
|
201 |
-
|
202 |
raise e
|
203 |
|
204 |
@spaces.GPU
|
@@ -256,23 +255,7 @@ footer {
|
|
256 |
visibility: hidden;
|
257 |
}
|
258 |
"""
|
259 |
-
|
260 |
-
"""๋ฉ๋ชจ๋ฆฌ๋ฅผ ์ ๋ฆฌํ๋ ๊ฐํ๋ ์ ํธ๋ฆฌํฐ ํจ์"""
|
261 |
-
import gc
|
262 |
-
import psutil
|
263 |
-
|
264 |
-
# Python ๊ฐ๋น์ง ์ปฌ๋ ์
๊ฐ์ ์คํ
|
265 |
-
gc.collect()
|
266 |
-
|
267 |
-
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
268 |
-
if torch.cuda.is_available():
|
269 |
-
torch.cuda.empty_cache()
|
270 |
-
torch.cuda.synchronize()
|
271 |
-
|
272 |
-
# RAM ์บ์ ์ ๋ฆฌ ์๋
|
273 |
-
if psutil.POSIX:
|
274 |
-
import os
|
275 |
-
os.system('sync')
|
276 |
# Gradio ์ธํฐํ์ด์ค ์ ์
|
277 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
278 |
gr.Markdown("""
|
@@ -390,6 +373,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
390 |
)
|
391 |
|
392 |
if __name__ == "__main__":
|
|
|
393 |
free_memory()
|
394 |
|
395 |
# ๋ชจ๋ธ ์ด๊ธฐํ
|
@@ -398,7 +382,7 @@ if __name__ == "__main__":
|
|
398 |
exit(1)
|
399 |
|
400 |
try:
|
401 |
-
#
|
402 |
test_image = Image.fromarray(np.ones((64, 64, 3), dtype=np.uint8) * 255)
|
403 |
pipeline.preprocess_image(test_image)
|
404 |
except Exception as e:
|
@@ -410,7 +394,5 @@ if __name__ == "__main__":
|
|
410 |
max_threads=2,
|
411 |
show_error=True,
|
412 |
cache_examples=False,
|
413 |
-
enable_queue=True
|
414 |
-
server_port=7860,
|
415 |
-
server_name="0.0.0.0"
|
416 |
)
|
|
|
32 |
TMP_DIR = "/tmp/Trellis-demo"
|
33 |
os.makedirs(TMP_DIR, exist_ok=True)
|
34 |
|
35 |
+
def free_memory():
|
36 |
+
"""๋ฉ๋ชจ๋ฆฌ๋ฅผ ์ ๋ฆฌํ๋ ์ ํธ๋ฆฌํฐ ํจ์"""
|
37 |
+
import gc
|
38 |
+
gc.collect()
|
39 |
+
|
40 |
+
@spaces.GPU
|
41 |
+
def free_gpu_memory():
|
42 |
+
"""GPU ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์ ๋ฆฌํ๋ ์ ํธ๋ฆฌํฐ ํจ์"""
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
torch.cuda.empty_cache()
|
45 |
+
|
46 |
def initialize_models():
|
47 |
global pipeline, translator, flux_pipe
|
48 |
|
49 |
try:
|
50 |
+
# Trellis ํ์ดํ๋ผ์ธ ์ด๊ธฐํ (CPU ๋ชจ๋๋ก)
|
51 |
pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
52 |
"JeffreyXiang/TRELLIS-image-large",
|
53 |
+
low_cpu_mem_usage=True
|
|
|
|
|
54 |
)
|
55 |
|
56 |
+
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
57 |
translator = translation_pipeline(
|
58 |
"translation",
|
59 |
model="Helsinki-NLP/opus-mt-ko-en",
|
60 |
device="cpu",
|
61 |
+
model_kwargs={"low_cpu_mem_usage": True}
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
+
# Flux ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
65 |
flux_pipe = FluxPipeline.from_pretrained(
|
66 |
"black-forest-labs/FLUX.1-dev",
|
67 |
+
low_cpu_mem_usage=True
|
|
|
|
|
|
|
68 |
)
|
69 |
|
|
|
|
|
|
|
70 |
print("Models initialized successfully")
|
71 |
return True
|
72 |
|
73 |
except Exception as e:
|
74 |
print(f"Model initialization error: {str(e)}")
|
|
|
75 |
return False
|
76 |
|
77 |
def translate_if_korean(text):
|
|
|
143 |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
|
144 |
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
|
145 |
try:
|
146 |
+
if torch.cuda.is_available():
|
147 |
+
pipeline.to("cuda")
|
148 |
+
pipeline.to(torch.float16)
|
149 |
|
150 |
if randomize_seed:
|
151 |
seed = np.random.randint(0, MAX_SEED)
|
152 |
|
153 |
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
|
154 |
|
|
|
|
|
|
|
155 |
# ๋ ์์ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ฌ์ฉ
|
156 |
max_size = 512
|
157 |
if max(input_image.size) > max_size:
|
|
|
179 |
}
|
180 |
)
|
181 |
|
|
|
182 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=30)['color']
|
183 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=30)['normal']
|
184 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
|
190 |
|
191 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
192 |
|
193 |
+
# CPU ๋ชจ๋๋ก ๋์๊ฐ๊ธฐ
|
194 |
+
pipeline.to("cpu")
|
195 |
+
|
196 |
return state, video_path
|
197 |
|
198 |
except Exception as e:
|
199 |
print(f"Error in image_to_3d: {str(e)}")
|
200 |
+
pipeline.to("cpu")
|
201 |
raise e
|
202 |
|
203 |
@spaces.GPU
|
|
|
255 |
visibility: hidden;
|
256 |
}
|
257 |
"""
|
258 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
# Gradio ์ธํฐํ์ด์ค ์ ์
|
260 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
261 |
gr.Markdown("""
|
|
|
373 |
)
|
374 |
|
375 |
if __name__ == "__main__":
|
376 |
+
# CPU ๋ฉ๋ชจ๋ฆฌ๋ง ์ ๋ฆฌ
|
377 |
free_memory()
|
378 |
|
379 |
# ๋ชจ๋ธ ์ด๊ธฐํ
|
|
|
382 |
exit(1)
|
383 |
|
384 |
try:
|
385 |
+
# rembg ์ฌ์ ๋ก๋ ์๋ (์์ ์ด๋ฏธ์ง๋ก)
|
386 |
test_image = Image.fromarray(np.ones((64, 64, 3), dtype=np.uint8) * 255)
|
387 |
pipeline.preprocess_image(test_image)
|
388 |
except Exception as e:
|
|
|
394 |
max_threads=2,
|
395 |
show_error=True,
|
396 |
cache_examples=False,
|
397 |
+
enable_queue=True
|
|
|
|
|
398 |
)
|