HumanWild / catmlp_dpt_head.py
geyongtao's picture
Create catmlp_dpt_head.py
57214d4 verified
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R heads
# --------------------------------------------------------
import torch
import torch.nn.functional as F
from mini_dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa
from mini_dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa
from mini_dust3r.croco.blocks import Mlp # noqa
def reg_desc(desc, mode):
if 'norm' in mode:
desc = desc / desc.norm(dim=-1, keepdim=True)
else:
raise ValueError(f"Unknown desc mode {mode}")
return desc
def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None):
if desc_conf_mode is None:
desc_conf_mode = conf_mode
fmap = out.permute(0, 2, 3, 1) # B,H,W,D
res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode))
if conf_mode is not None:
res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode)
if desc_dim is not None:
start = 3 + int(conf_mode is not None)
res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode)
if two_confs:
res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode)
else:
res['desc_conf'] = res['conf'].clone()
return res
class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT):
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
The input for both heads is a concatenation of Encoder and Decoder outputs
"""
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
self.local_feat_dim = local_feat_dim
patch_size = net.patch_embed.patch_size
if isinstance(patch_size, tuple):
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
patch_size = patch_size[0]
self.patch_size = patch_size
self.desc_mode = net.desc_mode
self.has_conf = has_conf
self.two_confs = net.two_confs # independent confs for 3D regr and descs
self.desc_conf_mode = net.desc_conf_mode
idim = net.enc_embed_dim + net.dec_embed_dim
self.head_local_features = Mlp(in_features=idim,
hidden_features=int(hidden_dim_factor * idim),
out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2)
def forward(self, decout, img_shape):
# pass through the heads
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))
# recover encoder and decoder outputs
enc_output, dec_output = decout[0], decout[-1]
cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate
H, W = img_shape
B, S, D = cat_output.shape
# extract local_features
local_features = self.head_local_features(cat_output) # B,S,D
local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size)
local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W
# post process 3D pts, descriptors and confidences
out = torch.cat([pts3d, local_features], dim=1)
if self.postprocess:
out = self.postprocess(out,
depth_mode=self.depth_mode,
conf_mode=self.conf_mode,
desc_dim=self.local_feat_dim,
desc_mode=self.desc_mode,
two_confs=self.two_confs,
desc_conf_mode=self.desc_conf_mode)
return out