Spaces:
Running
on
Zero
Running
on
Zero
Create catmlp_dpt_head.py
Browse files- catmlp_dpt_head.py +94 -0
catmlp_dpt_head.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
|
2 |
+
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
|
3 |
+
#
|
4 |
+
# --------------------------------------------------------
|
5 |
+
# MASt3R heads
|
6 |
+
# --------------------------------------------------------
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from mini_dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa
|
11 |
+
from mini_dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa
|
12 |
+
from mini_dust3r.croco.blocks import Mlp # noqa
|
13 |
+
|
14 |
+
def reg_desc(desc, mode):
|
15 |
+
if 'norm' in mode:
|
16 |
+
desc = desc / desc.norm(dim=-1, keepdim=True)
|
17 |
+
else:
|
18 |
+
raise ValueError(f"Unknown desc mode {mode}")
|
19 |
+
return desc
|
20 |
+
|
21 |
+
|
22 |
+
def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None):
|
23 |
+
if desc_conf_mode is None:
|
24 |
+
desc_conf_mode = conf_mode
|
25 |
+
fmap = out.permute(0, 2, 3, 1) # B,H,W,D
|
26 |
+
res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode))
|
27 |
+
if conf_mode is not None:
|
28 |
+
res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode)
|
29 |
+
if desc_dim is not None:
|
30 |
+
start = 3 + int(conf_mode is not None)
|
31 |
+
res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode)
|
32 |
+
if two_confs:
|
33 |
+
res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode)
|
34 |
+
else:
|
35 |
+
res['desc_conf'] = res['conf'].clone()
|
36 |
+
return res
|
37 |
+
|
38 |
+
|
39 |
+
class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT):
|
40 |
+
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
|
41 |
+
The input for both heads is a concatenation of Encoder and Decoder outputs
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
|
45 |
+
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
|
46 |
+
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
|
47 |
+
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
|
48 |
+
self.local_feat_dim = local_feat_dim
|
49 |
+
|
50 |
+
patch_size = net.patch_embed.patch_size
|
51 |
+
if isinstance(patch_size, tuple):
|
52 |
+
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
|
53 |
+
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
|
54 |
+
assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
|
55 |
+
patch_size = patch_size[0]
|
56 |
+
self.patch_size = patch_size
|
57 |
+
|
58 |
+
self.desc_mode = net.desc_mode
|
59 |
+
self.has_conf = has_conf
|
60 |
+
self.two_confs = net.two_confs # independent confs for 3D regr and descs
|
61 |
+
self.desc_conf_mode = net.desc_conf_mode
|
62 |
+
idim = net.enc_embed_dim + net.dec_embed_dim
|
63 |
+
|
64 |
+
self.head_local_features = Mlp(in_features=idim,
|
65 |
+
hidden_features=int(hidden_dim_factor * idim),
|
66 |
+
out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2)
|
67 |
+
|
68 |
+
def forward(self, decout, img_shape):
|
69 |
+
# pass through the heads
|
70 |
+
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))
|
71 |
+
|
72 |
+
# recover encoder and decoder outputs
|
73 |
+
enc_output, dec_output = decout[0], decout[-1]
|
74 |
+
cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate
|
75 |
+
H, W = img_shape
|
76 |
+
B, S, D = cat_output.shape
|
77 |
+
|
78 |
+
# extract local_features
|
79 |
+
local_features = self.head_local_features(cat_output) # B,S,D
|
80 |
+
local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size)
|
81 |
+
local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W
|
82 |
+
|
83 |
+
# post process 3D pts, descriptors and confidences
|
84 |
+
out = torch.cat([pts3d, local_features], dim=1)
|
85 |
+
if self.postprocess:
|
86 |
+
out = self.postprocess(out,
|
87 |
+
depth_mode=self.depth_mode,
|
88 |
+
conf_mode=self.conf_mode,
|
89 |
+
desc_dim=self.local_feat_dim,
|
90 |
+
desc_mode=self.desc_mode,
|
91 |
+
two_confs=self.two_confs,
|
92 |
+
desc_conf_mode=self.desc_conf_mode)
|
93 |
+
return out
|
94 |
+
|