Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import argparse | |
import pandas as pd | |
from tqdm import tqdm | |
import sys | |
import os | |
# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one). | |
# Comment these lines out to use a pip-installed one instead. | |
sys.path.insert(0, './') | |
sys.path.insert(0, '../pyserini/') | |
from pyserini.dsearch import AnceQueryEncoder, AutoQueryEncoder, TctColBertQueryEncoder, DprQueryEncoder | |
from pyserini.search import get_topics | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--encoder', type=str, help='encoder name or path', required=True) | |
parser.add_argument('--topics', type=str, help='topic name', required=True) | |
parser.add_argument('--output', type=str, help='dir to store query embeddings', required=True) | |
parser.add_argument('--device', type=str, | |
help='device cpu or cuda [cuda:0, cuda:1...]', default='cpu', required=False) | |
args = parser.parse_args() | |
device = args.device | |
topics = get_topics(args.topics) | |
if not os.path.exists(args.output): | |
os.mkdir(args.output) | |
if 'dpr' in args.encoder: | |
encoder = DprQueryEncoder(encoder_dir=args.encoder, device=device) | |
elif 'tct_colbert' in args.encoder: | |
encoder = TctColBertQueryEncoder(encoder_dir=args.encoder, device=device) | |
elif 'ance' in args.encoder: | |
encoder = AnceQueryEncoder(encoder_dir=args.encoder, device=device) | |
elif 'sentence' in args.encoder: | |
encoder = AutoQueryEncoder(encoder_dir=args.encoder, device=device, pooling='mean', l2_norm=True) | |
else: | |
encoder = AutoQueryEncoder(encoder_dir=args.encoder, device=device) | |
embeddings = {'id': [], 'text': [], 'embedding': []} | |
for key in tqdm(topics): | |
qid = str(key) | |
text = topics[key]['title'] | |
embeddings['id'].append(qid) | |
embeddings['text'].append(text) | |
embeddings['embedding'].append(encoder.encode(text.strip())) | |
embeddings = pd.DataFrame(embeddings) | |
embeddings.to_pickle(os.path.join(args.output, 'embedding.pkl')) | |