VoyageVoicer / helper.py
Geoffrey
application files
87aadd4
raw
history blame
1.71 kB
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains import SequentialChain
import os
os.environ['OPENAI_API_KEY'] = os.getenv("API_KEY")
llm = OpenAI(temperature=0.7)
def generate_restaurant_name_and_items(travel_place):
# Chain 1: Restaurant Name
prompt_template_name = PromptTemplate(
input_variables=['travel_place'],
template="I want to travel to {travel_place}. Suggest some places to visi with relevant emoji's for each places and description"
)
name_chain = LLMChain(llm=llm, prompt=prompt_template_name, output_key="places")
# Chain 2: Menu Items
prompt_template_items = PromptTemplate(
input_variables=['travel_place'],
template="""Suggest some must try food items at {travel_place}. Return it as a comma separate items with relevant emoji's for food items"""
)
food_items_chain = LLMChain(llm=llm, prompt=prompt_template_items, output_key="food")
# Chain 3: Things to do
prompt_template_toDo = PromptTemplate(
input_variables=['travel_place'],
template="""Suggest Top 10 things to do in {travel_place}. Return with estimated cost and with relevant emoji's for each."""
)
todo_items_chain = LLMChain(llm=llm, prompt=prompt_template_toDo, output_key="toDo")
chain = SequentialChain(
chains=[name_chain, food_items_chain, todo_items_chain],
input_variables=['travel_place'],
output_variables=['places', 'food', 'toDo']
)
response = chain({'travel_place': travel_place})
return response
if __name__ == "__main__":
print(generate_restaurant_name_and_items("Italian"))