Spaces:
Sleeping
Sleeping
Geoffrey
commited on
Commit
β’
87aadd4
1
Parent(s):
158e328
application files
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import openai
|
3 |
+
import helper
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Set your OpenAI API key
|
7 |
+
openai.api_key = os.getenv("API_KEY")
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Streamlit app title
|
12 |
+
st.title("Travel Planning ππποΈ")
|
13 |
+
|
14 |
+
# User input textbox
|
15 |
+
user_input = st.text_input("Enter your destination :",placeholder='paris')
|
16 |
+
|
17 |
+
if st.button("Get Langchain Response"):
|
18 |
+
|
19 |
+
# Use OpenAI to enhance the response
|
20 |
+
# response = openai.Completion.create(
|
21 |
+
# engine="text-davinci-002",
|
22 |
+
# prompt=user_input,
|
23 |
+
# max_tokens=50
|
24 |
+
# )
|
25 |
+
|
26 |
+
response = helper.generate_restaurant_name_and_items(user_input)
|
27 |
+
|
28 |
+
|
29 |
+
st.subheader(f"Vacation Destination: {response['travel_place']}")
|
30 |
+
st.subheader(f"πΊοΈ Places to visit: {response['places']}")
|
31 |
+
|
32 |
+
st.subheader('Must try π½οΈ:')
|
33 |
+
menu_items = response['food'].strip()
|
34 |
+
menu_items_list = menu_items.split('\n\n')
|
35 |
+
|
36 |
+
for category in menu_items_list:
|
37 |
+
st.write(category)
|
38 |
+
|
39 |
+
st.subheader(f"Top π things to do: {response['toDo']}")
|
40 |
+
|
helper.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms import OpenAI
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain.chains import LLMChain
|
4 |
+
from langchain.chains import SequentialChain
|
5 |
+
|
6 |
+
import os
|
7 |
+
os.environ['OPENAI_API_KEY'] = os.getenv("API_KEY")
|
8 |
+
|
9 |
+
llm = OpenAI(temperature=0.7)
|
10 |
+
|
11 |
+
def generate_restaurant_name_and_items(travel_place):
|
12 |
+
# Chain 1: Restaurant Name
|
13 |
+
prompt_template_name = PromptTemplate(
|
14 |
+
input_variables=['travel_place'],
|
15 |
+
template="I want to travel to {travel_place}. Suggest some places to visi with relevant emoji's for each places and description"
|
16 |
+
)
|
17 |
+
|
18 |
+
name_chain = LLMChain(llm=llm, prompt=prompt_template_name, output_key="places")
|
19 |
+
|
20 |
+
# Chain 2: Menu Items
|
21 |
+
prompt_template_items = PromptTemplate(
|
22 |
+
input_variables=['travel_place'],
|
23 |
+
template="""Suggest some must try food items at {travel_place}. Return it as a comma separate items with relevant emoji's for food items"""
|
24 |
+
)
|
25 |
+
|
26 |
+
food_items_chain = LLMChain(llm=llm, prompt=prompt_template_items, output_key="food")
|
27 |
+
|
28 |
+
# Chain 3: Things to do
|
29 |
+
prompt_template_toDo = PromptTemplate(
|
30 |
+
input_variables=['travel_place'],
|
31 |
+
template="""Suggest Top 10 things to do in {travel_place}. Return with estimated cost and with relevant emoji's for each."""
|
32 |
+
)
|
33 |
+
|
34 |
+
todo_items_chain = LLMChain(llm=llm, prompt=prompt_template_toDo, output_key="toDo")
|
35 |
+
|
36 |
+
chain = SequentialChain(
|
37 |
+
chains=[name_chain, food_items_chain, todo_items_chain],
|
38 |
+
input_variables=['travel_place'],
|
39 |
+
output_variables=['places', 'food', 'toDo']
|
40 |
+
)
|
41 |
+
|
42 |
+
response = chain({'travel_place': travel_place})
|
43 |
+
|
44 |
+
|
45 |
+
return response
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
print(generate_restaurant_name_and_items("Italian"))
|