sana-zero / sana_pipeline.py
gen6scp's picture
Patched codes for ZeroGPU
d643072
raw
history blame
13.7 kB
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import warnings
from dataclasses import dataclass, field
from typing import Optional, Tuple
import pyrallis
import torch
import torch.nn as nn
# Import the gemma2_patch from the zerogpu folder
from zerogpu.gemma2_patch import apply_patch
apply_patch()
warnings.filterwarnings("ignore") # ignore warning
from diffusion import DPMS, FlowEuler
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger
# from diffusion.utils.misc import read_config
from tools.download import find_model
def guidance_type_select(default_guidance_type, pag_scale, attn_type):
guidance_type = default_guidance_type
if not (pag_scale > 1.0 and attn_type == "linear"):
guidance_type = "classifier-free"
return guidance_type
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@dataclass
class SanaInference(SanaConfig):
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config
model_path: str = field(
default="output/Sana_D20/SANA.pth", metadata={"help": "Path to the model file (positional)"}
)
output: str = "./output"
bs: int = 1
image_size: int = 1024
cfg_scale: float = 5.0
pag_scale: float = 2.0
seed: int = 42
step: int = -1
custom_image_size: Optional[int] = None
shield_model_path: str = field(
default="google/shieldgemma-2b",
metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."},
)
class SanaPipeline(nn.Module):
def __init__(
self,
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml",
):
super().__init__()
config = pyrallis.load(SanaInference, open(config))
self.args = self.config = config
# set some hyper-parameters
self.image_size = self.config.model.image_size
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger = get_root_logger()
self.logger = logger
self.progress_fn = lambda progress, desc: None
self.latent_size = self.image_size // config.vae.vae_downsample_rate
self.max_sequence_length = config.text_encoder.model_max_length
self.flow_shift = config.scheduler.flow_shift
guidance_type = "classifier-free_PAG"
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
self.weight_dtype = weight_dtype
self.base_ratios = eval(f"ASPECT_RATIO_{self.image_size}_TEST")
self.vis_sampler = self.config.scheduler.vis_sampler
logger.info(f"Sampler {self.vis_sampler}, flow_shift: {self.flow_shift}")
self.guidance_type = guidance_type_select(guidance_type, self.args.pag_scale, config.model.attn_type)
logger.info(f"Inference with {self.weight_dtype}, PAG guidance layer: {self.config.model.pag_applied_layers}")
# 1. build vae and text encoder
self.vae = self.build_vae(config.vae)
self.tokenizer, self.text_encoder = self.build_text_encoder(config.text_encoder)
# 2. build Sana model
self.model = self.build_sana_model(config).to(self.device)
# 3. pre-compute null embedding
with torch.no_grad():
null_caption_token = self.tokenizer(
"", max_length=self.max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(self.device)
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]
def build_vae(self, config):
vae = get_vae(config.vae_type, config.vae_pretrained, self.device).to(self.weight_dtype)
return vae
def build_text_encoder(self, config):
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder_name, device=self.device)
return tokenizer, text_encoder
def build_sana_model(self, config):
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": self.latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": self.text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
"use_fp32_attention": config.model.get("fp32_attention", False) and config.model.mixed_precision != "bf16",
}
model = build_model(config.model.model, **model_kwargs)
model = model.to(self.weight_dtype)
self.logger.info(f"use_fp32_attention: {model.fp32_attention}")
self.logger.info(
f"{model.__class__.__name__}:{config.model.model},"
f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
return model
def from_pretrained(self, model_path):
state_dict = find_model(model_path)
state_dict = state_dict.get("state_dict", state_dict)
if "pos_embed" in state_dict:
del state_dict["pos_embed"]
missing, unexpected = self.model.load_state_dict(state_dict, strict=False)
self.model.eval().to(self.weight_dtype)
self.logger.info("Generating sample from ckpt: %s" % model_path)
self.logger.warning(f"Missing keys: {missing}")
self.logger.warning(f"Unexpected keys: {unexpected}")
def register_progress_bar(self, progress_fn=None):
self.progress_fn = progress_fn if progress_fn is not None else self.progress_fn
@torch.inference_mode()
def forward(
self,
prompt=None,
height=1024,
width=1024,
negative_prompt="",
num_inference_steps=20,
guidance_scale=5,
pag_guidance_scale=2.5,
num_images_per_prompt=1,
generator=torch.Generator().manual_seed(42),
latents=None,
):
self.ori_height, self.ori_width = height, width
self.height, self.width = classify_height_width_bin(height, width, ratios=self.base_ratios)
self.latent_size_h, self.latent_size_w = (
self.height // self.config.vae.vae_downsample_rate,
self.width // self.config.vae.vae_downsample_rate,
)
self.guidance_type = guidance_type_select(self.guidance_type, pag_guidance_scale, self.config.model.attn_type)
# 1. pre-compute negative embedding
if negative_prompt != "":
null_caption_token = self.tokenizer(
negative_prompt,
max_length=self.max_sequence_length,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(self.device)
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[
0
]
if prompt is None:
prompt = [""]
prompts = prompt if isinstance(prompt, list) else [prompt]
samples = []
for prompt in prompts:
# data prepare
prompts, hw, ar = (
[],
torch.tensor([[self.image_size, self.image_size]], dtype=torch.float, device=self.device).repeat(
num_images_per_prompt, 1
),
torch.tensor([[1.0]], device=self.device).repeat(num_images_per_prompt, 1),
)
for _ in range(num_images_per_prompt):
prompts.append(prepare_prompt_ar(prompt, self.base_ratios, device=self.device, show=False)[0].strip())
with torch.no_grad():
# prepare text feature
if not self.config.text_encoder.chi_prompt:
max_length_all = self.config.text_encoder.model_max_length
prompts_all = prompts
else:
chi_prompt = "\n".join(self.config.text_encoder.chi_prompt)
prompts_all = [chi_prompt + prompt for prompt in prompts]
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
max_length_all = (
num_chi_prompt_tokens + self.config.text_encoder.model_max_length - 2
) # magic number 2: [bos], [_]
caption_token = self.tokenizer(
prompts_all,
max_length=max_length_all,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(device=self.device)
select_index = [0] + list(range(-self.config.text_encoder.model_max_length + 1, 0))
caption_embs = self.text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][
:, :, select_index
].to(self.weight_dtype)
emb_masks = caption_token.attention_mask[:, select_index]
null_y = self.null_caption_embs.repeat(len(prompts), 1, 1)[:, None].to(self.weight_dtype)
n = len(prompts)
if latents is None:
z = torch.randn(
n,
self.config.vae.vae_latent_dim,
self.latent_size_h,
self.latent_size_w,
generator=generator,
device=self.device,
)
else:
z = latents.to(self.device)
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
if self.vis_sampler == "flow_euler":
flow_solver = FlowEuler(
self.model,
condition=caption_embs,
uncondition=null_y,
cfg_scale=guidance_scale,
model_kwargs=model_kwargs,
)
sample = flow_solver.sample(
z,
steps=num_inference_steps,
)
elif self.vis_sampler == "flow_dpm-solver":
scheduler = DPMS(
self.model,
condition=caption_embs,
uncondition=null_y,
guidance_type=self.guidance_type,
cfg_scale=guidance_scale,
pag_scale=pag_guidance_scale,
pag_applied_layers=self.config.model.pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
)
scheduler.register_progress_bar(self.progress_fn)
sample = scheduler.sample(
z,
steps=num_inference_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=self.flow_shift,
)
sample = sample.to(self.weight_dtype)
with torch.no_grad():
sample = vae_decode(self.config.vae.vae_type, self.vae, sample)
sample = resize_and_crop_tensor(sample, self.ori_width, self.ori_height)
samples.append(sample)
return sample
return samples