|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import warnings |
|
from dataclasses import dataclass, field |
|
from typing import Optional, Tuple |
|
|
|
import pyrallis |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
from zerogpu.gemma2_patch import apply_patch |
|
apply_patch() |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
from diffusion import DPMS, FlowEuler |
|
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST |
|
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode |
|
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor |
|
from diffusion.utils.config import SanaConfig |
|
from diffusion.utils.logger import get_root_logger |
|
|
|
|
|
from tools.download import find_model |
|
|
|
|
|
def guidance_type_select(default_guidance_type, pag_scale, attn_type): |
|
guidance_type = default_guidance_type |
|
if not (pag_scale > 1.0 and attn_type == "linear"): |
|
guidance_type = "classifier-free" |
|
return guidance_type |
|
|
|
|
|
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: |
|
"""Returns binned height and width.""" |
|
ar = float(height / width) |
|
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) |
|
default_hw = ratios[closest_ratio] |
|
return int(default_hw[0]), int(default_hw[1]) |
|
|
|
|
|
@dataclass |
|
class SanaInference(SanaConfig): |
|
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" |
|
model_path: str = field( |
|
default="output/Sana_D20/SANA.pth", metadata={"help": "Path to the model file (positional)"} |
|
) |
|
output: str = "./output" |
|
bs: int = 1 |
|
image_size: int = 1024 |
|
cfg_scale: float = 5.0 |
|
pag_scale: float = 2.0 |
|
seed: int = 42 |
|
step: int = -1 |
|
custom_image_size: Optional[int] = None |
|
shield_model_path: str = field( |
|
default="google/shieldgemma-2b", |
|
metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."}, |
|
) |
|
|
|
|
|
class SanaPipeline(nn.Module): |
|
def __init__( |
|
self, |
|
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml", |
|
): |
|
super().__init__() |
|
config = pyrallis.load(SanaInference, open(config)) |
|
self.args = self.config = config |
|
|
|
|
|
self.image_size = self.config.model.image_size |
|
|
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
logger = get_root_logger() |
|
self.logger = logger |
|
self.progress_fn = lambda progress, desc: None |
|
|
|
self.latent_size = self.image_size // config.vae.vae_downsample_rate |
|
self.max_sequence_length = config.text_encoder.model_max_length |
|
self.flow_shift = config.scheduler.flow_shift |
|
guidance_type = "classifier-free_PAG" |
|
|
|
if config.model.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif config.model.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
elif config.model.mixed_precision == "fp32": |
|
weight_dtype = torch.float32 |
|
else: |
|
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined") |
|
self.weight_dtype = weight_dtype |
|
|
|
self.base_ratios = eval(f"ASPECT_RATIO_{self.image_size}_TEST") |
|
self.vis_sampler = self.config.scheduler.vis_sampler |
|
logger.info(f"Sampler {self.vis_sampler}, flow_shift: {self.flow_shift}") |
|
self.guidance_type = guidance_type_select(guidance_type, self.args.pag_scale, config.model.attn_type) |
|
logger.info(f"Inference with {self.weight_dtype}, PAG guidance layer: {self.config.model.pag_applied_layers}") |
|
|
|
|
|
self.vae = self.build_vae(config.vae) |
|
self.tokenizer, self.text_encoder = self.build_text_encoder(config.text_encoder) |
|
|
|
|
|
self.model = self.build_sana_model(config).to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
null_caption_token = self.tokenizer( |
|
"", max_length=self.max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" |
|
).to(self.device) |
|
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0] |
|
|
|
|
|
def build_vae(self, config): |
|
vae = get_vae(config.vae_type, config.vae_pretrained, self.device).to(self.weight_dtype) |
|
return vae |
|
|
|
def build_text_encoder(self, config): |
|
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder_name, device=self.device) |
|
return tokenizer, text_encoder |
|
|
|
def build_sana_model(self, config): |
|
|
|
pred_sigma = getattr(config.scheduler, "pred_sigma", True) |
|
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma |
|
model_kwargs = { |
|
"input_size": self.latent_size, |
|
"pe_interpolation": config.model.pe_interpolation, |
|
"config": config, |
|
"model_max_length": config.text_encoder.model_max_length, |
|
"qk_norm": config.model.qk_norm, |
|
"micro_condition": config.model.micro_condition, |
|
"caption_channels": self.text_encoder.config.hidden_size, |
|
"y_norm": config.text_encoder.y_norm, |
|
"attn_type": config.model.attn_type, |
|
"ffn_type": config.model.ffn_type, |
|
"mlp_ratio": config.model.mlp_ratio, |
|
"mlp_acts": list(config.model.mlp_acts), |
|
"in_channels": config.vae.vae_latent_dim, |
|
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor, |
|
"use_pe": config.model.use_pe, |
|
"pred_sigma": pred_sigma, |
|
"learn_sigma": learn_sigma, |
|
"use_fp32_attention": config.model.get("fp32_attention", False) and config.model.mixed_precision != "bf16", |
|
} |
|
model = build_model(config.model.model, **model_kwargs) |
|
model = model.to(self.weight_dtype) |
|
|
|
self.logger.info(f"use_fp32_attention: {model.fp32_attention}") |
|
self.logger.info( |
|
f"{model.__class__.__name__}:{config.model.model}," |
|
f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}" |
|
) |
|
return model |
|
|
|
def from_pretrained(self, model_path): |
|
state_dict = find_model(model_path) |
|
state_dict = state_dict.get("state_dict", state_dict) |
|
if "pos_embed" in state_dict: |
|
del state_dict["pos_embed"] |
|
missing, unexpected = self.model.load_state_dict(state_dict, strict=False) |
|
self.model.eval().to(self.weight_dtype) |
|
|
|
self.logger.info("Generating sample from ckpt: %s" % model_path) |
|
self.logger.warning(f"Missing keys: {missing}") |
|
self.logger.warning(f"Unexpected keys: {unexpected}") |
|
|
|
def register_progress_bar(self, progress_fn=None): |
|
self.progress_fn = progress_fn if progress_fn is not None else self.progress_fn |
|
|
|
@torch.inference_mode() |
|
def forward( |
|
self, |
|
prompt=None, |
|
height=1024, |
|
width=1024, |
|
negative_prompt="", |
|
num_inference_steps=20, |
|
guidance_scale=5, |
|
pag_guidance_scale=2.5, |
|
num_images_per_prompt=1, |
|
generator=torch.Generator().manual_seed(42), |
|
latents=None, |
|
): |
|
self.ori_height, self.ori_width = height, width |
|
self.height, self.width = classify_height_width_bin(height, width, ratios=self.base_ratios) |
|
self.latent_size_h, self.latent_size_w = ( |
|
self.height // self.config.vae.vae_downsample_rate, |
|
self.width // self.config.vae.vae_downsample_rate, |
|
) |
|
self.guidance_type = guidance_type_select(self.guidance_type, pag_guidance_scale, self.config.model.attn_type) |
|
|
|
|
|
if negative_prompt != "": |
|
null_caption_token = self.tokenizer( |
|
negative_prompt, |
|
max_length=self.max_sequence_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
).to(self.device) |
|
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[ |
|
0 |
|
] |
|
|
|
if prompt is None: |
|
prompt = [""] |
|
prompts = prompt if isinstance(prompt, list) else [prompt] |
|
samples = [] |
|
|
|
for prompt in prompts: |
|
|
|
prompts, hw, ar = ( |
|
[], |
|
torch.tensor([[self.image_size, self.image_size]], dtype=torch.float, device=self.device).repeat( |
|
num_images_per_prompt, 1 |
|
), |
|
torch.tensor([[1.0]], device=self.device).repeat(num_images_per_prompt, 1), |
|
) |
|
|
|
for _ in range(num_images_per_prompt): |
|
prompts.append(prepare_prompt_ar(prompt, self.base_ratios, device=self.device, show=False)[0].strip()) |
|
|
|
with torch.no_grad(): |
|
|
|
if not self.config.text_encoder.chi_prompt: |
|
max_length_all = self.config.text_encoder.model_max_length |
|
prompts_all = prompts |
|
else: |
|
chi_prompt = "\n".join(self.config.text_encoder.chi_prompt) |
|
prompts_all = [chi_prompt + prompt for prompt in prompts] |
|
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) |
|
max_length_all = ( |
|
num_chi_prompt_tokens + self.config.text_encoder.model_max_length - 2 |
|
) |
|
|
|
caption_token = self.tokenizer( |
|
prompts_all, |
|
max_length=max_length_all, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
).to(device=self.device) |
|
select_index = [0] + list(range(-self.config.text_encoder.model_max_length + 1, 0)) |
|
caption_embs = self.text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][ |
|
:, :, select_index |
|
].to(self.weight_dtype) |
|
emb_masks = caption_token.attention_mask[:, select_index] |
|
null_y = self.null_caption_embs.repeat(len(prompts), 1, 1)[:, None].to(self.weight_dtype) |
|
|
|
n = len(prompts) |
|
if latents is None: |
|
z = torch.randn( |
|
n, |
|
self.config.vae.vae_latent_dim, |
|
self.latent_size_h, |
|
self.latent_size_w, |
|
generator=generator, |
|
device=self.device, |
|
) |
|
else: |
|
z = latents.to(self.device) |
|
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks) |
|
if self.vis_sampler == "flow_euler": |
|
flow_solver = FlowEuler( |
|
self.model, |
|
condition=caption_embs, |
|
uncondition=null_y, |
|
cfg_scale=guidance_scale, |
|
model_kwargs=model_kwargs, |
|
) |
|
sample = flow_solver.sample( |
|
z, |
|
steps=num_inference_steps, |
|
) |
|
elif self.vis_sampler == "flow_dpm-solver": |
|
scheduler = DPMS( |
|
self.model, |
|
condition=caption_embs, |
|
uncondition=null_y, |
|
guidance_type=self.guidance_type, |
|
cfg_scale=guidance_scale, |
|
pag_scale=pag_guidance_scale, |
|
pag_applied_layers=self.config.model.pag_applied_layers, |
|
model_type="flow", |
|
model_kwargs=model_kwargs, |
|
schedule="FLOW", |
|
) |
|
scheduler.register_progress_bar(self.progress_fn) |
|
sample = scheduler.sample( |
|
z, |
|
steps=num_inference_steps, |
|
order=2, |
|
skip_type="time_uniform_flow", |
|
method="multistep", |
|
flow_shift=self.flow_shift, |
|
) |
|
|
|
sample = sample.to(self.weight_dtype) |
|
with torch.no_grad(): |
|
sample = vae_decode(self.config.vae.vae_type, self.vae, sample) |
|
|
|
sample = resize_and_crop_tensor(sample, self.ori_width, self.ori_height) |
|
samples.append(sample) |
|
|
|
return sample |
|
|
|
return samples |
|
|