Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from PIL import Image | |
import os | |
import traceback | |
import spaces # Ensure import for GPU management | |
# Load the Byaldi and Qwen2-VL models without using .cuda() | |
rag_model = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16 | |
) | |
# Processor for Qwen2-VL | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
# Decorate the function for GPU management | |
def ocr_and_extract(image, text_query): | |
try: | |
# Save the uploaded image temporarily | |
temp_image_path = "temp_image.jpg" | |
image.save(temp_image_path) | |
# Index the image with Byaldi | |
rag_model.index( | |
input_path=temp_image_path, | |
index_name="image_index", | |
store_collection_with_index=False, | |
overwrite=True | |
) | |
# Perform the search query on the indexed image | |
results = rag_model.search(text_query, k=1) | |
# Prepare the input for Qwen2-VL | |
image_data = Image.open(temp_image_path) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image_data}, | |
{"type": "text", "text": text_query}, | |
], | |
} | |
] | |
# Process the message and prepare for Qwen2-VL | |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, _ = process_vision_info(messages) | |
inputs = processor( | |
text=[text_input], | |
images=image_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# Move the Qwen2-VL model and inputs to GPU | |
qwen_model.to("cuda") | |
inputs = {k: v.to("cuda") for k, v in inputs.items()} | |
# Generate the output with Qwen2-VL | |
generated_ids = qwen_model.generate(**inputs, max_new_tokens=50) | |
output_text = processor.batch_decode( | |
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
# Clean up the temporary file | |
os.remove(temp_image_path) | |
return output_text[0] | |
except Exception as e: | |
error_message = str(e) | |
traceback.print_exc() | |
return f"Error: {error_message}" | |
# Gradio interface for image input | |
iface = gr.Interface( | |
fn=ocr_and_extract, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Textbox(label="Enter your query (optional)"), | |
], | |
outputs="text", | |
title="Image OCR with Byaldi + Qwen2-VL", | |
description="Upload an image (JPEG/PNG) containing Hindi and English text for OCR.", | |
) | |
# Launch the Gradio app | |
iface.launch() |