mmyolo-webui / app.py
isLinXu
update
1ddb223
import os
os.system("pip uninstall mmcv-full")
os.system("mim install 'mmengine>=0.6.0'")
os.system("mim install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("mim install 'mmdet>=3.0.0,<4.0.0'")
os.system("mim install 'mmyolo'")
import fnmatch
import glob
import os
import PIL.Image
import cv2
import gradio as gr
from argparse import Namespace
from pathlib import Path
import mmcv
import torch
from mmdet.apis import inference_detector, init_detector
from mmengine.config import Config, ConfigDict
from mmengine.logging import print_log
from mmengine.utils import ProgressBar, path
from mmyolo.registry import VISUALIZERS
from mmyolo.utils import switch_to_deploy
from mmyolo.utils.labelme_utils import LabelmeFormat
from mmyolo.utils.misc import get_file_list, show_data_classes
from mim import download
import warnings
warnings.filterwarnings("ignore")
ckpt_path = "./checkpoint"
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
model_list = ['yolov5_n-v61_syncbn_fast_8xb16-300e_coco', 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_m-v61_syncbn_fast_8xb16-300e_coco', 'yolov5_l-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_x-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco', 'yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco',
'yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco',
'yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco', 'yolov5_n-v61_fast_1xb64-50e_voc',
'yolov5_s-v61_fast_1xb64-50e_voc',
'yolov5_m-v61_fast_1xb64-50e_voc', 'yolov5_l-v61_fast_1xb32-50e_voc',
'yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance',
'yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov6_s_syncbn_fast_8xb32-400e_coco', 'yolov6_n_syncbn_fast_8xb32-400e_coco',
'yolov6_t_syncbn_fast_8xb32-400e_coco',
'yolov6_m_syncbn_fast_8xb32-300e_coco', 'yolov6_l_syncbn_fast_8xb32-300e_coco',
'yolox_tiny_fast_8xb8-300e_coco',
'yolox_s_fast_8xb8-300e_coco', 'yolox_m_fast_8xb8-300e_coco', 'yolox_l_fast_8xb8-300e_coco',
'yolox_x_fast_8xb8-300e_coco',
'yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco', 'yolox_s_fast_8xb32-300e-rtmdet-hyp_coco',
'yolox_m_fast_8xb32-300e-rtmdet-hyp_coco',
'yolox-pose_tiny_8xb32-300e-rtmdet-hyp_coco', 'yolox-pose_s_8xb32-300e-rtmdet-hyp_coco',
'yolox-pose_m_8xb32-300e-rtmdet-hyp_coco',
'yolox-pose_l_8xb32-300e-rtmdet-hyp_coco', 'rtmdet_tiny_syncbn_fast_8xb32-300e_coco',
'kd_tiny_rtmdet_s_neck_300e_coco',
'rtmdet_s_syncbn_fast_8xb32-300e_coco', 'kd_s_rtmdet_m_neck_300e_coco',
'rtmdet_m_syncbn_fast_8xb32-300e_coco',
'kd_m_rtmdet_l_neck_300e_coco', 'rtmdet_l_syncbn_fast_8xb32-300e_coco',
'kd_l_rtmdet_x_neck_300e_coco',
'rtmdet_x_syncbn_fast_8xb32-300e_coco', 'rtmdet-r_tiny_fast_1xb8-36e_dota',
'rtmdet-r_s_fast_1xb8-36e_dota',
'rtmdet-r_m_syncbn_fast_2xb4-36e_dota', 'rtmdet-r_l_syncbn_fast_2xb4-36e_dota',
'rtmdet-r_l_syncbn_fast_2xb4-aug-100e_dota',
'yolov7_tiny_syncbn_fast_8x16b-300e_coco', 'yolov7_l_syncbn_fast_8x16b-300e_coco',
'yolov7_x_syncbn_fast_8x16b-300e_coco',
'yolov7_w-p6_syncbn_fast_8x16b-300e_coco', 'yolov7_e-p6_syncbn_fast_8x16b-300e_coco',
'ppyoloe_plus_s_fast_8xb8-80e_coco',
'ppyoloe_plus_m_fast_8xb8-80e_coco', 'ppyoloe_plus_L_fast_8xb8-80e_coco',
'ppyoloe_plus_x_fast_8xb8-80e_coco',
'yolov8_n_syncbn_fast_8xb16-500e_coco', 'yolov8_s_syncbn_fast_8xb16-500e_coco',
'yolov8_m_syncbn_fast_8xb16-500e_coco',
'yolov8_l_syncbn_fast_8xb16-500e_coco', 'yolov8_x_syncbn_fast_8xb16-500e_coco',
'yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco']
def download_test_image():
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
'bus.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
'dogs.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
'zidane.jpg')
import shutil
def clear_folder(folder_path):
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
print(f"Clear {folder_path} successfully.")
def download_cfg_checkpoint_model_name(model_name):
clear_folder("./checkpoint")
download(package='mmyolo',
configs=[model_name],
dest_root='./checkpoint')
def detect_objects(args):
config = args.config
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
# build the model from a config file and a checkpoint file
model = init_detector(
config, args.checkpoint, device=args.device, cfg_options={})
if not args.show:
path.mkdir_or_exist(args.out_dir)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta
# get file list
files, source_type = get_file_list(args.img)
# get model class name
dataset_classes = model.dataset_meta.get('classes')
# check class name
if args.class_name is not None:
for class_name in args.class_name:
if class_name in dataset_classes:
continue
show_data_classes(dataset_classes)
raise RuntimeError(
'Expected args.class_name to be one of the list, '
f'but got "{class_name}"')
# start detector inference
progress_bar = ProgressBar(len(files))
for file in files:
result = inference_detector(model, file)
img = mmcv.imread(file)
img = mmcv.imconvert(img, 'bgr', 'rgb')
if source_type['is_dir']:
filename = os.path.relpath(file, args.img).replace('/', '_')
else:
filename = os.path.basename(file)
out_file = None if args.show else os.path.join(args.out_dir, filename)
progress_bar.update()
# Get candidate predict info with score threshold
pred_instances = result.pred_instances[
result.pred_instances.scores > args.score_thr]
visualizer.add_datasample(
filename,
img,
data_sample=result,
draw_gt=False,
show=args.show,
wait_time=0,
out_file=out_file,
pred_score_thr=args.score_thr)
def object_detection(img, model_name, out_dir, device, show, score_thr, class_name):
download_cfg_checkpoint_model_name(model_name)
path = "./checkpoint"
config = [f for f in os.listdir(path) if fnmatch.fnmatch(f, model_name + "*.py")][0]
config = path + "/" + config
checkpoint = [f for f in os.listdir(path) if fnmatch.fnmatch(f, model_name + "*.pth")][0]
checkpoint = path + "/" + checkpoint
img_path = "input_img.jpg"
img.save("input_img.jpg")
args = Namespace(
img=img_path,
config=config,
checkpoint=checkpoint,
out_dir=out_dir,
device=device,
show=show,
score_thr=score_thr,
class_name=class_name,
)
detect_objects(args)
img_out = PIL.Image.open(os.path.join(out_dir, img_path))
return img_out
inputs = [
gr.inputs.Image(type="pil", label="input"),
gr.inputs.Dropdown(choices=[m for m in model_list], label='Model', default='yolov5_s-v61_syncbn_fast_8xb16-300e_coco'),
gr.inputs.Textbox(default="./output", label="output"),
gr.inputs.Radio(["cuda:0", "cpu"], default="cpu", label="device"),
gr.inputs.Checkbox(default=False, label="show"),
gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.3, label="score_thr"),
gr.inputs.Textbox(default=None, label="class_name"),
]
download_test_image()
examples = [
['bus.jpg', 'yolov5_n-v61_syncbn_fast_8xb16-300e_coco', './output', "cpu", False, 0.3, None],
['dogs.jpg', 'yolov6_s_syncbn_fast_8xb32-400e_coco', './output', "cpu", False, 0.3, None],
['zidane.jpg', 'rtmdet_tiny_syncbn_fast_8xb32-300e_coco', './output', "cpu", False, 0.3, None]
]
text_output = gr.outputs.Textbox(label="输出路径")
src_image = gr.outputs.Image(type="pil")
output_image = gr.outputs.Image(type="pil")
title = "MMYOLO detection web demo"
description = "<div align='center'><img src='https://user-images.githubusercontent.com/27466624/222385101-516e551c-49f5-480d-a135-4b24ee6dc308.png' width='800''/><div>" \
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmyolo'>MMYOLO</a> 是一个开源的物体检测工具箱,提供了丰富的检测模型和数据增强方式。" \
"OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.</p>"
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmyolo'>MMYOLO</a></p>" \
"<p style='text-align: center'><a href='https://github.com/isLinXu'>gradio build by gatilin</a></a></p>" \
gr.Interface(fn=object_detection, inputs=inputs, outputs=output_image,
examples=examples,
title=title,
description=description, article=article, allow_flagging=False).launch()