Spaces:
Running
Running
import torch | |
import os | |
import math | |
import folder_paths | |
import comfy.model_management as model_management | |
from node_helpers import conditioning_set_values | |
from comfy.clip_vision import load as load_clip_vision | |
from comfy.sd import load_lora_for_models | |
import comfy.utils | |
import torch.nn as nn | |
from PIL import Image | |
try: | |
import torchvision.transforms.v2 as T | |
except ImportError: | |
import torchvision.transforms as T | |
from .image_proj_models import MLPProjModel, MLPProjModelFaceId, ProjModelFaceIdPlus, Resampler, ImageProjModel | |
from .CrossAttentionPatch import Attn2Replace, ipadapter_attention | |
from .utils import ( | |
encode_image_masked, | |
tensor_to_size, | |
contrast_adaptive_sharpening, | |
tensor_to_image, | |
image_to_tensor, | |
ipadapter_model_loader, | |
insightface_loader, | |
get_clipvision_file, | |
get_ipadapter_file, | |
get_lora_file, | |
) | |
# set the models directory | |
if "ipadapter" not in folder_paths.folder_names_and_paths: | |
current_paths = [os.path.join(folder_paths.models_dir, "ipadapter")] | |
else: | |
current_paths, _ = folder_paths.folder_names_and_paths["ipadapter"] | |
folder_paths.folder_names_and_paths["ipadapter"] = (current_paths, folder_paths.supported_pt_extensions) | |
WEIGHT_TYPES = ["linear", "ease in", "ease out", 'ease in-out', 'reverse in-out', 'weak input', 'weak output', 'weak middle', 'strong middle', 'style transfer', 'composition', 'strong style transfer', 'style and composition', 'style transfer precise', 'composition precise'] | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Main IPAdapter Class | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class IPAdapter(nn.Module): | |
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False, is_faceid=False, is_portrait_unnorm=False, is_kwai_kolors=False, encoder_hid_proj=None, weight_kolors=1.0): | |
super().__init__() | |
self.clip_embeddings_dim = clip_embeddings_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.output_cross_attention_dim = output_cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.is_sdxl = is_sdxl | |
self.is_full = is_full | |
self.is_plus = is_plus | |
self.is_portrait_unnorm = is_portrait_unnorm | |
self.is_kwai_kolors = is_kwai_kolors | |
if is_faceid and not is_portrait_unnorm: | |
self.image_proj_model = self.init_proj_faceid() | |
elif is_full: | |
self.image_proj_model = self.init_proj_full() | |
elif is_plus or is_portrait_unnorm: | |
self.image_proj_model = self.init_proj_plus() | |
else: | |
self.image_proj_model = self.init_proj() | |
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"]) | |
self.ip_layers = To_KV(ipadapter_model["ip_adapter"], encoder_hid_proj=encoder_hid_proj, weight_kolors=weight_kolors) | |
def init_proj(self): | |
image_proj_model = ImageProjModel( | |
cross_attention_dim=self.cross_attention_dim, | |
clip_embeddings_dim=self.clip_embeddings_dim, | |
clip_extra_context_tokens=self.clip_extra_context_tokens | |
) | |
return image_proj_model | |
def init_proj_plus(self): | |
image_proj_model = Resampler( | |
dim=self.cross_attention_dim, | |
depth=4, | |
dim_head=64, | |
heads=20 if self.is_sdxl and not self.is_kwai_kolors else 12, | |
num_queries=self.clip_extra_context_tokens, | |
embedding_dim=self.clip_embeddings_dim, | |
output_dim=self.output_cross_attention_dim, | |
ff_mult=4 | |
) | |
return image_proj_model | |
def init_proj_full(self): | |
image_proj_model = MLPProjModel( | |
cross_attention_dim=self.cross_attention_dim, | |
clip_embeddings_dim=self.clip_embeddings_dim | |
) | |
return image_proj_model | |
def init_proj_faceid(self): | |
if self.is_plus: | |
image_proj_model = ProjModelFaceIdPlus( | |
cross_attention_dim=self.cross_attention_dim, | |
id_embeddings_dim=512, | |
clip_embeddings_dim=self.clip_embeddings_dim, | |
num_tokens=self.clip_extra_context_tokens, | |
) | |
else: | |
image_proj_model = MLPProjModelFaceId( | |
cross_attention_dim=self.cross_attention_dim, | |
id_embeddings_dim=512, | |
num_tokens=self.clip_extra_context_tokens, | |
) | |
return image_proj_model | |
def get_image_embeds(self, clip_embed, clip_embed_zeroed, batch_size): | |
torch_device = model_management.get_torch_device() | |
intermediate_device = model_management.intermediate_device() | |
if batch_size == 0: | |
batch_size = clip_embed.shape[0] | |
intermediate_device = torch_device | |
elif batch_size > clip_embed.shape[0]: | |
batch_size = clip_embed.shape[0] | |
clip_embed = torch.split(clip_embed, batch_size, dim=0) | |
clip_embed_zeroed = torch.split(clip_embed_zeroed, batch_size, dim=0) | |
image_prompt_embeds = [] | |
uncond_image_prompt_embeds = [] | |
for ce, cez in zip(clip_embed, clip_embed_zeroed): | |
image_prompt_embeds.append(self.image_proj_model(ce.to(torch_device)).to(intermediate_device)) | |
uncond_image_prompt_embeds.append(self.image_proj_model(cez.to(torch_device)).to(intermediate_device)) | |
del clip_embed, clip_embed_zeroed | |
image_prompt_embeds = torch.cat(image_prompt_embeds, dim=0) | |
uncond_image_prompt_embeds = torch.cat(uncond_image_prompt_embeds, dim=0) | |
torch.cuda.empty_cache() | |
#image_prompt_embeds = self.image_proj_model(clip_embed) | |
#uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def get_image_embeds_faceid_plus(self, face_embed, clip_embed, s_scale, shortcut, batch_size): | |
torch_device = model_management.get_torch_device() | |
intermediate_device = model_management.intermediate_device() | |
if batch_size == 0: | |
batch_size = clip_embed.shape[0] | |
intermediate_device = torch_device | |
elif batch_size > clip_embed.shape[0]: | |
batch_size = clip_embed.shape[0] | |
face_embed_batch = torch.split(face_embed, batch_size, dim=0) | |
clip_embed_batch = torch.split(clip_embed, batch_size, dim=0) | |
embeds = [] | |
for face_embed, clip_embed in zip(face_embed_batch, clip_embed_batch): | |
embeds.append(self.image_proj_model(face_embed.to(torch_device), clip_embed.to(torch_device), scale=s_scale, shortcut=shortcut).to(intermediate_device)) | |
embeds = torch.cat(embeds, dim=0) | |
del face_embed_batch, clip_embed_batch | |
torch.cuda.empty_cache() | |
#embeds = self.image_proj_model(face_embed, clip_embed, scale=s_scale, shortcut=shortcut) | |
return embeds | |
class To_KV(nn.Module): | |
def __init__(self, state_dict, encoder_hid_proj=None, weight_kolors=1.0): | |
super().__init__() | |
if encoder_hid_proj is not None: | |
hid_proj = nn.Linear(encoder_hid_proj["weight"].shape[1], encoder_hid_proj["weight"].shape[0], bias=True) | |
hid_proj.weight.data = encoder_hid_proj["weight"] * weight_kolors | |
hid_proj.bias.data = encoder_hid_proj["bias"] * weight_kolors | |
self.to_kvs = nn.ModuleDict() | |
for key, value in state_dict.items(): | |
if encoder_hid_proj is not None: | |
linear_proj = nn.Linear(value.shape[1], value.shape[0], bias=False) | |
linear_proj.weight.data = value | |
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Sequential(hid_proj, linear_proj) | |
else: | |
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False) | |
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value | |
def set_model_patch_replace(model, patch_kwargs, key): | |
to = model.model_options["transformer_options"].copy() | |
if "patches_replace" not in to: | |
to["patches_replace"] = {} | |
else: | |
to["patches_replace"] = to["patches_replace"].copy() | |
if "attn2" not in to["patches_replace"]: | |
to["patches_replace"]["attn2"] = {} | |
else: | |
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy() | |
if key not in to["patches_replace"]["attn2"]: | |
to["patches_replace"]["attn2"][key] = Attn2Replace(ipadapter_attention, **patch_kwargs) | |
model.model_options["transformer_options"] = to | |
else: | |
to["patches_replace"]["attn2"][key].add(ipadapter_attention, **patch_kwargs) | |
def ipadapter_execute(model, | |
ipadapter, | |
clipvision, | |
insightface=None, | |
image=None, | |
image_composition=None, | |
image_negative=None, | |
weight=1.0, | |
weight_composition=1.0, | |
weight_faceidv2=None, | |
weight_kolors=1.0, | |
weight_type="linear", | |
combine_embeds="concat", | |
start_at=0.0, | |
end_at=1.0, | |
attn_mask=None, | |
pos_embed=None, | |
neg_embed=None, | |
unfold_batch=False, | |
embeds_scaling='V only', | |
layer_weights=None, | |
encode_batch_size=0, | |
style_boost=None, | |
composition_boost=None, | |
enhance_tiles=1, | |
enhance_ratio=1.0,): | |
device = model_management.get_torch_device() | |
dtype = model_management.unet_dtype() | |
if dtype not in [torch.float32, torch.float16, torch.bfloat16]: | |
dtype = torch.float16 if model_management.should_use_fp16() else torch.float32 | |
is_full = "proj.3.weight" in ipadapter["image_proj"] | |
is_portrait_unnorm = "portraitunnorm" in ipadapter | |
is_plus = (is_full or "latents" in ipadapter["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter["image_proj"]) and not is_portrait_unnorm | |
output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1] | |
is_sdxl = output_cross_attention_dim == 2048 | |
is_kwai_kolors_faceid = "perceiver_resampler.layers.0.0.to_out.weight" in ipadapter["image_proj"] and ipadapter["image_proj"]["perceiver_resampler.layers.0.0.to_out.weight"].shape[0] == 4096 | |
is_faceidv2 = "faceidplusv2" in ipadapter or is_kwai_kolors_faceid | |
is_kwai_kolors = (is_sdxl and "layers.0.0.to_out.weight" in ipadapter["image_proj"] and ipadapter["image_proj"]["layers.0.0.to_out.weight"].shape[0] == 2048) or is_kwai_kolors_faceid | |
is_portrait = "proj.2.weight" in ipadapter["image_proj"] and not "proj.3.weight" in ipadapter["image_proj"] and not "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] and not is_kwai_kolors_faceid | |
is_faceid = is_portrait or "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] or is_portrait_unnorm or is_kwai_kolors_faceid | |
if is_faceid and not insightface: | |
raise Exception("insightface model is required for FaceID models") | |
if is_faceidv2: | |
weight_faceidv2 = weight_faceidv2 if weight_faceidv2 is not None else weight*2 | |
if is_kwai_kolors_faceid: | |
cross_attention_dim = 4096 | |
elif is_kwai_kolors: | |
cross_attention_dim = 2048 | |
elif (is_plus and is_sdxl and not is_faceid) or is_portrait_unnorm: | |
cross_attention_dim = 1280 | |
else: | |
cross_attention_dim = output_cross_attention_dim | |
if is_kwai_kolors_faceid: | |
clip_extra_context_tokens = 6 | |
elif (is_plus and not is_faceid) or is_portrait or is_portrait_unnorm: | |
clip_extra_context_tokens = 16 | |
else: | |
clip_extra_context_tokens = 4 | |
if image is not None and image.shape[1] != image.shape[2]: | |
print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m") | |
if isinstance(weight, list): | |
weight = torch.tensor(weight).unsqueeze(-1).unsqueeze(-1).to(device, dtype=dtype) if unfold_batch else weight[0] | |
if style_boost is not None: | |
weight_type = "style transfer precise" | |
elif composition_boost is not None: | |
weight_type = "composition precise" | |
# special weight types | |
if layer_weights is not None and layer_weights != '': | |
weight = { int(k): float(v)*weight for k, v in [x.split(":") for x in layer_weights.split(",")] } | |
weight_type = weight_type if weight_type == "style transfer precise" or weight_type == "composition precise" else "linear" | |
elif weight_type == "style transfer": | |
weight = { 6:weight } if is_sdxl else { 0:weight, 1:weight, 2:weight, 3:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } | |
elif weight_type == "composition": | |
weight = { 3:weight } if is_sdxl else { 4:weight*0.25, 5:weight } | |
elif weight_type == "strong style transfer": | |
if is_sdxl: | |
weight = { 0:weight, 1:weight, 2:weight, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight } | |
else: | |
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } | |
elif weight_type == "style and composition": | |
if is_sdxl: | |
weight = { 3:weight_composition, 6:weight } | |
else: | |
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } | |
elif weight_type == "strong style and composition": | |
if is_sdxl: | |
weight = { 0:weight, 1:weight, 2:weight, 3:weight_composition, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight } | |
else: | |
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition, 5:weight_composition, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } | |
elif weight_type == "style transfer precise": | |
weight_composition = style_boost if style_boost is not None else weight | |
if is_sdxl: | |
weight = { 3:weight_composition, 6:weight } | |
else: | |
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } | |
elif weight_type == "composition precise": | |
weight_composition = weight | |
weight = composition_boost if composition_boost is not None else weight | |
if is_sdxl: | |
weight = { 0:weight*.1, 1:weight*.1, 2:weight*.1, 3:weight_composition, 4:weight*.1, 5:weight*.1, 6:weight, 7:weight*.1, 8:weight*.1, 9:weight*.1, 10:weight*.1 } | |
else: | |
weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 6:weight*.1, 7:weight*.1, 8:weight*.1, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } | |
clipvision_size = 224 if not is_kwai_kolors else 336 | |
img_comp_cond_embeds = None | |
face_cond_embeds = None | |
if is_faceid: | |
if insightface is None: | |
raise Exception("Insightface model is required for FaceID models") | |
from insightface.utils import face_align | |
insightface.det_model.input_size = (640,640) # reset the detection size | |
image_iface = tensor_to_image(image) | |
face_cond_embeds = [] | |
image = [] | |
for i in range(image_iface.shape[0]): | |
for size in [(size, size) for size in range(640, 256, -64)]: | |
insightface.det_model.input_size = size # TODO: hacky but seems to be working | |
face = insightface.get(image_iface[i]) | |
if face: | |
if not is_portrait_unnorm: | |
face_cond_embeds.append(torch.from_numpy(face[0].normed_embedding).unsqueeze(0)) | |
else: | |
face_cond_embeds.append(torch.from_numpy(face[0].embedding).unsqueeze(0)) | |
image.append(image_to_tensor(face_align.norm_crop(image_iface[i], landmark=face[0].kps, image_size=336 if is_kwai_kolors_faceid else 256 if is_sdxl else 224))) | |
if 640 not in size: | |
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m") | |
break | |
else: | |
raise Exception('InsightFace: No face detected.') | |
face_cond_embeds = torch.stack(face_cond_embeds).to(device, dtype=dtype) | |
image = torch.stack(image) | |
del image_iface, face | |
if image is not None: | |
img_cond_embeds = encode_image_masked(clipvision, image, batch_size=encode_batch_size, tiles=enhance_tiles, ratio=enhance_ratio, clipvision_size=clipvision_size) | |
if image_composition is not None: | |
img_comp_cond_embeds = encode_image_masked(clipvision, image_composition, batch_size=encode_batch_size, tiles=enhance_tiles, ratio=enhance_ratio, clipvision_size=clipvision_size) | |
if is_plus: | |
img_cond_embeds = img_cond_embeds.penultimate_hidden_states | |
image_negative = image_negative if image_negative is not None else torch.zeros([1, clipvision_size, clipvision_size, 3]) | |
img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size, clipvision_size=clipvision_size).penultimate_hidden_states | |
if image_composition is not None: | |
img_comp_cond_embeds = img_comp_cond_embeds.penultimate_hidden_states | |
else: | |
img_cond_embeds = img_cond_embeds.image_embeds if not is_faceid else face_cond_embeds | |
if image_negative is not None and not is_faceid: | |
img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size, clipvision_size=clipvision_size).image_embeds | |
else: | |
img_uncond_embeds = torch.zeros_like(img_cond_embeds) | |
if image_composition is not None: | |
img_comp_cond_embeds = img_comp_cond_embeds.image_embeds | |
del image_negative, image_composition | |
image = None if not is_faceid else image # if it's face_id we need the cropped face for later | |
elif pos_embed is not None: | |
img_cond_embeds = pos_embed | |
if neg_embed is not None: | |
img_uncond_embeds = neg_embed | |
else: | |
if is_plus: | |
img_uncond_embeds = encode_image_masked(clipvision, torch.zeros([1, clipvision_size, clipvision_size, 3]), clipvision_size=clipvision_size).penultimate_hidden_states | |
else: | |
img_uncond_embeds = torch.zeros_like(img_cond_embeds) | |
del pos_embed, neg_embed | |
else: | |
raise Exception("Images or Embeds are required") | |
# ensure that cond and uncond have the same batch size | |
img_uncond_embeds = tensor_to_size(img_uncond_embeds, img_cond_embeds.shape[0]) | |
img_cond_embeds = img_cond_embeds.to(device, dtype=dtype) | |
img_uncond_embeds = img_uncond_embeds.to(device, dtype=dtype) | |
if img_comp_cond_embeds is not None: | |
img_comp_cond_embeds = img_comp_cond_embeds.to(device, dtype=dtype) | |
# combine the embeddings if needed | |
if combine_embeds != "concat" and img_cond_embeds.shape[0] > 1 and not unfold_batch: | |
if combine_embeds == "add": | |
img_cond_embeds = torch.sum(img_cond_embeds, dim=0).unsqueeze(0) | |
if face_cond_embeds is not None: | |
face_cond_embeds = torch.sum(face_cond_embeds, dim=0).unsqueeze(0) | |
if img_comp_cond_embeds is not None: | |
img_comp_cond_embeds = torch.sum(img_comp_cond_embeds, dim=0).unsqueeze(0) | |
elif combine_embeds == "subtract": | |
img_cond_embeds = img_cond_embeds[0] - torch.mean(img_cond_embeds[1:], dim=0) | |
img_cond_embeds = img_cond_embeds.unsqueeze(0) | |
if face_cond_embeds is not None: | |
face_cond_embeds = face_cond_embeds[0] - torch.mean(face_cond_embeds[1:], dim=0) | |
face_cond_embeds = face_cond_embeds.unsqueeze(0) | |
if img_comp_cond_embeds is not None: | |
img_comp_cond_embeds = img_comp_cond_embeds[0] - torch.mean(img_comp_cond_embeds[1:], dim=0) | |
img_comp_cond_embeds = img_comp_cond_embeds.unsqueeze(0) | |
elif combine_embeds == "average": | |
img_cond_embeds = torch.mean(img_cond_embeds, dim=0).unsqueeze(0) | |
if face_cond_embeds is not None: | |
face_cond_embeds = torch.mean(face_cond_embeds, dim=0).unsqueeze(0) | |
if img_comp_cond_embeds is not None: | |
img_comp_cond_embeds = torch.mean(img_comp_cond_embeds, dim=0).unsqueeze(0) | |
elif combine_embeds == "norm average": | |
img_cond_embeds = torch.mean(img_cond_embeds / torch.norm(img_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) | |
if face_cond_embeds is not None: | |
face_cond_embeds = torch.mean(face_cond_embeds / torch.norm(face_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) | |
if img_comp_cond_embeds is not None: | |
img_comp_cond_embeds = torch.mean(img_comp_cond_embeds / torch.norm(img_comp_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) | |
img_uncond_embeds = img_uncond_embeds[0].unsqueeze(0) # TODO: better strategy for uncond could be to average them | |
if attn_mask is not None: | |
attn_mask = attn_mask.to(device, dtype=dtype) | |
encoder_hid_proj = None | |
if is_kwai_kolors_faceid and hasattr(model.model, "diffusion_model") and hasattr(model.model.diffusion_model, "encoder_hid_proj"): | |
encoder_hid_proj = model.model.diffusion_model.encoder_hid_proj.state_dict() | |
ipa = IPAdapter( | |
ipadapter, | |
cross_attention_dim=cross_attention_dim, | |
output_cross_attention_dim=output_cross_attention_dim, | |
clip_embeddings_dim=img_cond_embeds.shape[-1], | |
clip_extra_context_tokens=clip_extra_context_tokens, | |
is_sdxl=is_sdxl, | |
is_plus=is_plus, | |
is_full=is_full, | |
is_faceid=is_faceid, | |
is_portrait_unnorm=is_portrait_unnorm, | |
is_kwai_kolors=is_kwai_kolors, | |
encoder_hid_proj=encoder_hid_proj, | |
weight_kolors=weight_kolors | |
).to(device, dtype=dtype) | |
if is_faceid and is_plus: | |
cond = ipa.get_image_embeds_faceid_plus(face_cond_embeds, img_cond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size) | |
# TODO: check if noise helps with the uncond face embeds | |
uncond = ipa.get_image_embeds_faceid_plus(torch.zeros_like(face_cond_embeds), img_uncond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size) | |
else: | |
cond, uncond = ipa.get_image_embeds(img_cond_embeds, img_uncond_embeds, encode_batch_size) | |
if img_comp_cond_embeds is not None: | |
cond_comp = ipa.get_image_embeds(img_comp_cond_embeds, img_uncond_embeds, encode_batch_size)[0] | |
cond = cond.to(device, dtype=dtype) | |
uncond = uncond.to(device, dtype=dtype) | |
cond_alt = None | |
if img_comp_cond_embeds is not None: | |
cond_alt = { 3: cond_comp.to(device, dtype=dtype) } | |
del img_cond_embeds, img_uncond_embeds, img_comp_cond_embeds, face_cond_embeds | |
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) | |
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) | |
patch_kwargs = { | |
"ipadapter": ipa, | |
"weight": weight, | |
"cond": cond, | |
"cond_alt": cond_alt, | |
"uncond": uncond, | |
"weight_type": weight_type, | |
"mask": attn_mask, | |
"sigma_start": sigma_start, | |
"sigma_end": sigma_end, | |
"unfold_batch": unfold_batch, | |
"embeds_scaling": embeds_scaling, | |
} | |
number = 0 | |
if not is_sdxl: | |
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention | |
patch_kwargs["module_key"] = str(number*2+1) | |
set_model_patch_replace(model, patch_kwargs, ("input", id)) | |
number += 1 | |
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention | |
patch_kwargs["module_key"] = str(number*2+1) | |
set_model_patch_replace(model, patch_kwargs, ("output", id)) | |
number += 1 | |
patch_kwargs["module_key"] = str(number*2+1) | |
set_model_patch_replace(model, patch_kwargs, ("middle", 1)) | |
else: | |
for id in [4,5,7,8]: # id of input_blocks that have cross attention | |
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth | |
for index in block_indices: | |
patch_kwargs["module_key"] = str(number*2+1) | |
set_model_patch_replace(model, patch_kwargs, ("input", id, index)) | |
number += 1 | |
for id in range(6): # id of output_blocks that have cross attention | |
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth | |
for index in block_indices: | |
patch_kwargs["module_key"] = str(number*2+1) | |
set_model_patch_replace(model, patch_kwargs, ("output", id, index)) | |
number += 1 | |
for index in range(10): | |
patch_kwargs["module_key"] = str(number*2+1) | |
set_model_patch_replace(model, patch_kwargs, ("middle", 1, index)) | |
number += 1 | |
return (model, image) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Loaders | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class IPAdapterUnifiedLoader: | |
def __init__(self): | |
self.lora = None | |
self.clipvision = { "file": None, "model": None } | |
self.ipadapter = { "file": None, "model": None } | |
self.insightface = { "provider": None, "model": None } | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", ), | |
"preset": (['LIGHT - SD1.5 only (low strength)', 'STANDARD (medium strength)', 'VIT-G (medium strength)', 'PLUS (high strength)', 'PLUS FACE (portraits)', 'FULL FACE - SD1.5 only (portraits stronger)'], ), | |
}, | |
"optional": { | |
"ipadapter": ("IPADAPTER", ), | |
}} | |
RETURN_TYPES = ("MODEL", "IPADAPTER", ) | |
RETURN_NAMES = ("model", "ipadapter", ) | |
FUNCTION = "load_models" | |
CATEGORY = "ipadapter" | |
def load_models(self, model, preset, lora_strength=0.0, provider="CPU", ipadapter=None): | |
pipeline = { "clipvision": { 'file': None, 'model': None }, "ipadapter": { 'file': None, 'model': None }, "insightface": { 'provider': None, 'model': None } } | |
if ipadapter is not None: | |
pipeline = ipadapter | |
# 1. Load the clipvision model | |
clipvision_file = get_clipvision_file(preset) | |
if clipvision_file is None: | |
raise Exception("ClipVision model not found.") | |
if clipvision_file != self.clipvision['file']: | |
if clipvision_file != pipeline['clipvision']['file']: | |
self.clipvision['file'] = clipvision_file | |
self.clipvision['model'] = load_clip_vision(clipvision_file) | |
print(f"\033[33mINFO: Clip Vision model loaded from {clipvision_file}\033[0m") | |
else: | |
self.clipvision = pipeline['clipvision'] | |
# 2. Load the ipadapter model | |
is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix)) | |
ipadapter_file, is_insightface, lora_pattern = get_ipadapter_file(preset, is_sdxl) | |
if ipadapter_file is None: | |
raise Exception("IPAdapter model not found.") | |
if ipadapter_file != self.ipadapter['file']: | |
if pipeline['ipadapter']['file'] != ipadapter_file: | |
self.ipadapter['file'] = ipadapter_file | |
self.ipadapter['model'] = ipadapter_model_loader(ipadapter_file) | |
print(f"\033[33mINFO: IPAdapter model loaded from {ipadapter_file}\033[0m") | |
else: | |
self.ipadapter = pipeline['ipadapter'] | |
# 3. Load the lora model if needed | |
if lora_pattern is not None: | |
lora_file = get_lora_file(lora_pattern) | |
lora_model = None | |
if lora_file is None: | |
raise Exception("LoRA model not found.") | |
if self.lora is not None: | |
if lora_file == self.lora['file']: | |
lora_model = self.lora['model'] | |
else: | |
self.lora = None | |
torch.cuda.empty_cache() | |
if lora_model is None: | |
lora_model = comfy.utils.load_torch_file(lora_file, safe_load=True) | |
self.lora = { 'file': lora_file, 'model': lora_model } | |
print(f"\033[33mINFO: LoRA model loaded from {lora_file}\033[0m") | |
if lora_strength > 0: | |
model, _ = load_lora_for_models(model, None, lora_model, lora_strength, 0) | |
# 4. Load the insightface model if needed | |
if is_insightface: | |
if provider != self.insightface['provider']: | |
if pipeline['insightface']['provider'] != provider: | |
self.insightface['provider'] = provider | |
self.insightface['model'] = insightface_loader(provider) | |
print(f"\033[33mINFO: InsightFace model loaded with {provider} provider\033[0m") | |
else: | |
self.insightface = pipeline['insightface'] | |
return (model, { 'clipvision': self.clipvision, 'ipadapter': self.ipadapter, 'insightface': self.insightface }, ) | |
class IPAdapterUnifiedLoaderFaceID(IPAdapterUnifiedLoader): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", ), | |
"preset": (['FACEID', 'FACEID PLUS - SD1.5 only', 'FACEID PLUS V2', 'FACEID PORTRAIT (style transfer)', 'FACEID PORTRAIT UNNORM - SDXL only (strong)'], ), | |
"lora_strength": ("FLOAT", { "default": 0.6, "min": 0, "max": 1, "step": 0.01 }), | |
"provider": (["CPU", "CUDA", "ROCM", "DirectML", "OpenVINO", "CoreML"], ), | |
}, | |
"optional": { | |
"ipadapter": ("IPADAPTER", ), | |
}} | |
RETURN_NAMES = ("MODEL", "ipadapter", ) | |
CATEGORY = "ipadapter/faceid" | |
class IPAdapterUnifiedLoaderCommunity(IPAdapterUnifiedLoader): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", ), | |
"preset": (['Composition', 'Kolors'], ), | |
}, | |
"optional": { | |
"ipadapter": ("IPADAPTER", ), | |
}} | |
CATEGORY = "ipadapter/loaders" | |
class IPAdapterModelLoader: | |
def INPUT_TYPES(s): | |
return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}} | |
RETURN_TYPES = ("IPADAPTER",) | |
FUNCTION = "load_ipadapter_model" | |
CATEGORY = "ipadapter/loaders" | |
def load_ipadapter_model(self, ipadapter_file): | |
ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file) | |
return (ipadapter_model_loader(ipadapter_file),) | |
class IPAdapterInsightFaceLoader: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"provider": (["CPU", "CUDA", "ROCM"], ), | |
"model_name": (['buffalo_l', 'antelopev2'], ) | |
}, | |
} | |
RETURN_TYPES = ("INSIGHTFACE",) | |
FUNCTION = "load_insightface" | |
CATEGORY = "ipadapter/loaders" | |
def load_insightface(self, provider, model_name): | |
return (insightface_loader(provider, model_name=model_name),) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Main Apply Nodes | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class IPAdapterSimple: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"weight_type": (['standard', 'prompt is more important', 'style transfer'], ), | |
}, | |
"optional": { | |
"attn_mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "apply_ipadapter" | |
CATEGORY = "ipadapter" | |
def apply_ipadapter(self, model, ipadapter, image, weight, start_at, end_at, weight_type, attn_mask=None): | |
if weight_type.startswith("style"): | |
weight_type = "style transfer" | |
elif weight_type == "prompt is more important": | |
weight_type = "ease out" | |
else: | |
weight_type = "linear" | |
ipa_args = { | |
"image": image, | |
"weight": weight, | |
"start_at": start_at, | |
"end_at": end_at, | |
"attn_mask": attn_mask, | |
"weight_type": weight_type, | |
"insightface": ipadapter['insightface']['model'] if 'insightface' in ipadapter else None, | |
} | |
if 'ipadapter' not in ipadapter: | |
raise Exception("IPAdapter model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.") | |
if 'clipvision' not in ipadapter: | |
raise Exception("CLIPVision model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.") | |
return ipadapter_execute(model.clone(), ipadapter['ipadapter']['model'], ipadapter['clipvision']['model'], **ipa_args) | |
class IPAdapterAdvanced: | |
def __init__(self): | |
self.unfold_batch = False | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "apply_ipadapter" | |
CATEGORY = "ipadapter" | |
def apply_ipadapter(self, model, ipadapter, start_at=0.0, end_at=1.0, weight=1.0, weight_style=1.0, weight_composition=1.0, expand_style=False, weight_type="linear", combine_embeds="concat", weight_faceidv2=None, image=None, image_style=None, image_composition=None, image_negative=None, clip_vision=None, attn_mask=None, insightface=None, embeds_scaling='V only', layer_weights=None, ipadapter_params=None, encode_batch_size=0, style_boost=None, composition_boost=None, enhance_tiles=1, enhance_ratio=1.0, weight_kolors=1.0): | |
is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix)) | |
if 'ipadapter' in ipadapter: | |
ipadapter_model = ipadapter['ipadapter']['model'] | |
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] | |
else: | |
ipadapter_model = ipadapter | |
if clip_vision is None: | |
raise Exception("Missing CLIPVision model.") | |
if image_style is not None: # we are doing style + composition transfer | |
if not is_sdxl: | |
raise Exception("Style + Composition transfer is only available for SDXL models at the moment.") # TODO: check feasibility for SD1.5 models | |
image = image_style | |
weight = weight_style | |
if image_composition is None: | |
image_composition = image_style | |
weight_type = "strong style and composition" if expand_style else "style and composition" | |
if ipadapter_params is not None: # we are doing batch processing | |
image = ipadapter_params['image'] | |
attn_mask = ipadapter_params['attn_mask'] | |
weight = ipadapter_params['weight'] | |
weight_type = ipadapter_params['weight_type'] | |
start_at = ipadapter_params['start_at'] | |
end_at = ipadapter_params['end_at'] | |
else: | |
# at this point weight can be a list from the batch-weight or a single float | |
weight = [weight] | |
image = image if isinstance(image, list) else [image] | |
work_model = model.clone() | |
for i in range(len(image)): | |
if image[i] is None: | |
continue | |
ipa_args = { | |
"image": image[i], | |
"image_composition": image_composition, | |
"image_negative": image_negative, | |
"weight": weight[i], | |
"weight_composition": weight_composition, | |
"weight_faceidv2": weight_faceidv2, | |
"weight_type": weight_type if not isinstance(weight_type, list) else weight_type[i], | |
"combine_embeds": combine_embeds, | |
"start_at": start_at if not isinstance(start_at, list) else start_at[i], | |
"end_at": end_at if not isinstance(end_at, list) else end_at[i], | |
"attn_mask": attn_mask if not isinstance(attn_mask, list) else attn_mask[i], | |
"unfold_batch": self.unfold_batch, | |
"embeds_scaling": embeds_scaling, | |
"insightface": insightface if insightface is not None else ipadapter['insightface']['model'] if 'insightface' in ipadapter else None, | |
"layer_weights": layer_weights, | |
"encode_batch_size": encode_batch_size, | |
"style_boost": style_boost, | |
"composition_boost": composition_boost, | |
"enhance_tiles": enhance_tiles, | |
"enhance_ratio": enhance_ratio, | |
"weight_kolors": weight_kolors, | |
} | |
work_model, face_image = ipadapter_execute(work_model, ipadapter_model, clip_vision, **ipa_args) | |
del ipadapter | |
return (work_model, face_image, ) | |
class IPAdapterBatch(IPAdapterAdvanced): | |
def __init__(self): | |
self.unfold_batch = True | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
class IPAdapterStyleComposition(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image_style": ("IMAGE",), | |
"image_composition": ("IMAGE",), | |
"weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"expand_style": ("BOOLEAN", { "default": False }), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"], {"default": "average"}), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
CATEGORY = "ipadapter/style_composition" | |
class IPAdapterStyleCompositionBatch(IPAdapterStyleComposition): | |
def __init__(self): | |
self.unfold_batch = True | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image_style": ("IMAGE",), | |
"image_composition": ("IMAGE",), | |
"weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"expand_style": ("BOOLEAN", { "default": False }), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
class IPAdapterFaceID(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), | |
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
"insightface": ("INSIGHTFACE",), | |
} | |
} | |
CATEGORY = "ipadapter/faceid" | |
RETURN_TYPES = ("MODEL","IMAGE",) | |
RETURN_NAMES = ("MODEL", "face_image", ) | |
class IPAAdapterFaceIDBatch(IPAdapterFaceID): | |
def __init__(self): | |
self.unfold_batch = True | |
class IPAdapterFaceIDKolors(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), | |
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }), | |
"weight_kolors": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
"insightface": ("INSIGHTFACE",), | |
} | |
} | |
CATEGORY = "ipadapter/faceid" | |
RETURN_TYPES = ("MODEL","IMAGE",) | |
RETURN_NAMES = ("MODEL", "face_image", ) | |
class IPAdapterTiled: | |
def __init__(self): | |
self.unfold_batch = False | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
RETURN_TYPES = ("MODEL", "IMAGE", "MASK", ) | |
RETURN_NAMES = ("MODEL", "tiles", "masks", ) | |
FUNCTION = "apply_tiled" | |
CATEGORY = "ipadapter/tiled" | |
def apply_tiled(self, model, ipadapter, image, weight, weight_type, start_at, end_at, sharpening, combine_embeds="concat", image_negative=None, attn_mask=None, clip_vision=None, embeds_scaling='V only', encode_batch_size=0): | |
# 1. Select the models | |
if 'ipadapter' in ipadapter: | |
ipadapter_model = ipadapter['ipadapter']['model'] | |
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] | |
else: | |
ipadapter_model = ipadapter | |
clip_vision = clip_vision | |
if clip_vision is None: | |
raise Exception("Missing CLIPVision model.") | |
del ipadapter | |
# 2. Extract the tiles | |
tile_size = 256 # I'm using 256 instead of 224 as it is more likely divisible by the latent size, it will be downscaled to 224 by the clip vision encoder | |
_, oh, ow, _ = image.shape | |
if attn_mask is None: | |
attn_mask = torch.ones([1, oh, ow], dtype=image.dtype, device=image.device) | |
image = image.permute([0,3,1,2]) | |
attn_mask = attn_mask.unsqueeze(1) | |
# the mask should have the same proportions as the reference image and the latent | |
attn_mask = T.Resize((oh, ow), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask) | |
# if the image is almost a square, we crop it to a square | |
if oh / ow > 0.75 and oh / ow < 1.33: | |
# crop the image to a square | |
image = T.CenterCrop(min(oh, ow))(image) | |
resize = (tile_size*2, tile_size*2) | |
attn_mask = T.CenterCrop(min(oh, ow))(attn_mask) | |
# otherwise resize the smallest side and the other proportionally | |
else: | |
resize = (int(tile_size * ow / oh), tile_size) if oh < ow else (tile_size, int(tile_size * oh / ow)) | |
# using PIL for better results | |
imgs = [] | |
for img in image: | |
img = T.ToPILImage()(img) | |
img = img.resize(resize, resample=Image.Resampling['LANCZOS']) | |
imgs.append(T.ToTensor()(img)) | |
image = torch.stack(imgs) | |
del imgs, img | |
# we don't need a high quality resize for the mask | |
attn_mask = T.Resize(resize[::-1], interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask) | |
# we allow a maximum of 4 tiles | |
if oh / ow > 4 or oh / ow < 0.25: | |
crop = (tile_size, tile_size*4) if oh < ow else (tile_size*4, tile_size) | |
image = T.CenterCrop(crop)(image) | |
attn_mask = T.CenterCrop(crop)(attn_mask) | |
attn_mask = attn_mask.squeeze(1) | |
if sharpening > 0: | |
image = contrast_adaptive_sharpening(image, sharpening) | |
image = image.permute([0,2,3,1]) | |
_, oh, ow, _ = image.shape | |
# find the number of tiles for each side | |
tiles_x = math.ceil(ow / tile_size) | |
tiles_y = math.ceil(oh / tile_size) | |
overlap_x = max(0, (tiles_x * tile_size - ow) / (tiles_x - 1 if tiles_x > 1 else 1)) | |
overlap_y = max(0, (tiles_y * tile_size - oh) / (tiles_y - 1 if tiles_y > 1 else 1)) | |
base_mask = torch.zeros([attn_mask.shape[0], oh, ow], dtype=image.dtype, device=image.device) | |
# extract all the tiles from the image and create the masks | |
tiles = [] | |
masks = [] | |
for y in range(tiles_y): | |
for x in range(tiles_x): | |
start_x = int(x * (tile_size - overlap_x)) | |
start_y = int(y * (tile_size - overlap_y)) | |
tiles.append(image[:, start_y:start_y+tile_size, start_x:start_x+tile_size, :]) | |
mask = base_mask.clone() | |
mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size] = attn_mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size] | |
masks.append(mask) | |
del mask | |
# 3. Apply the ipadapter to each group of tiles | |
model = model.clone() | |
for i in range(len(tiles)): | |
ipa_args = { | |
"image": tiles[i], | |
"image_negative": image_negative, | |
"weight": weight, | |
"weight_type": weight_type, | |
"combine_embeds": combine_embeds, | |
"start_at": start_at, | |
"end_at": end_at, | |
"attn_mask": masks[i], | |
"unfold_batch": self.unfold_batch, | |
"embeds_scaling": embeds_scaling, | |
"encode_batch_size": encode_batch_size, | |
} | |
# apply the ipadapter to the model without cloning it | |
model, _ = ipadapter_execute(model, ipadapter_model, clip_vision, **ipa_args) | |
return (model, torch.cat(tiles), torch.cat(masks), ) | |
class IPAdapterTiledBatch(IPAdapterTiled): | |
def __init__(self): | |
self.unfold_batch = True | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
class IPAdapterEmbeds: | |
def __init__(self): | |
self.unfold_batch = False | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"pos_embed": ("EMBEDS",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"neg_embed": ("EMBEDS",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "apply_ipadapter" | |
CATEGORY = "ipadapter/embeds" | |
def apply_ipadapter(self, model, ipadapter, pos_embed, weight, weight_type, start_at, end_at, neg_embed=None, attn_mask=None, clip_vision=None, embeds_scaling='V only'): | |
ipa_args = { | |
"pos_embed": pos_embed, | |
"neg_embed": neg_embed, | |
"weight": weight, | |
"weight_type": weight_type, | |
"start_at": start_at, | |
"end_at": end_at, | |
"attn_mask": attn_mask, | |
"embeds_scaling": embeds_scaling, | |
"unfold_batch": self.unfold_batch, | |
} | |
if 'ipadapter' in ipadapter: | |
ipadapter_model = ipadapter['ipadapter']['model'] | |
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] | |
else: | |
ipadapter_model = ipadapter | |
clip_vision = clip_vision | |
if clip_vision is None and neg_embed is None: | |
raise Exception("Missing CLIPVision model.") | |
del ipadapter | |
return ipadapter_execute(model.clone(), ipadapter_model, clip_vision, **ipa_args) | |
class IPAdapterEmbedsBatch(IPAdapterEmbeds): | |
def __init__(self): | |
self.unfold_batch = True | |
class IPAdapterMS(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
"layer_weights": ("STRING", { "default": "", "multiline": True }), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
"insightface": ("INSIGHTFACE",), | |
} | |
} | |
CATEGORY = "ipadapter/dev" | |
class IPAdapterClipVisionEnhancer(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
"enhance_tiles": ("INT", { "default": 2, "min": 1, "max": 16 }), | |
"enhance_ratio": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
CATEGORY = "ipadapter/dev" | |
class IPAdapterClipVisionEnhancerBatch(IPAdapterClipVisionEnhancer): | |
def __init__(self): | |
self.unfold_batch = True | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
"enhance_tiles": ("INT", { "default": 2, "min": 1, "max": 16 }), | |
"enhance_ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
"encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
class IPAdapterFromParams(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"ipadapter_params": ("IPADAPTER_PARAMS", ), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
CATEGORY = "ipadapter/params" | |
class IPAdapterPreciseStyleTransfer(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"style_boost": ("FLOAT", { "default": 1.0, "min": -5, "max": 5, "step": 0.05 }), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
class IPAdapterPreciseStyleTransferBatch(IPAdapterPreciseStyleTransfer): | |
def __init__(self): | |
self.unfold_batch = True | |
class IPAdapterPreciseComposition(IPAdapterAdvanced): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"ipadapter": ("IPADAPTER", ), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), | |
"composition_boost": ("FLOAT", { "default": 0.0, "min": -5, "max": 5, "step": 0.05 }), | |
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), | |
}, | |
"optional": { | |
"image_negative": ("IMAGE",), | |
"attn_mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
class IPAdapterPreciseCompositionBatch(IPAdapterPreciseComposition): | |
def __init__(self): | |
self.unfold_batch = True | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Helpers | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class IPAdapterEncoder: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"ipadapter": ("IPADAPTER",), | |
"image": ("IMAGE",), | |
"weight": ("FLOAT", { "default": 1.0, "min": -1.0, "max": 3.0, "step": 0.01 }), | |
}, | |
"optional": { | |
"mask": ("MASK",), | |
"clip_vision": ("CLIP_VISION",), | |
} | |
} | |
RETURN_TYPES = ("EMBEDS", "EMBEDS",) | |
RETURN_NAMES = ("pos_embed", "neg_embed",) | |
FUNCTION = "encode" | |
CATEGORY = "ipadapter/embeds" | |
def encode(self, ipadapter, image, weight, mask=None, clip_vision=None): | |
if 'ipadapter' in ipadapter: | |
ipadapter_model = ipadapter['ipadapter']['model'] | |
clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] | |
else: | |
ipadapter_model = ipadapter | |
clip_vision = clip_vision | |
if clip_vision is None: | |
raise Exception("Missing CLIPVision model.") | |
is_plus = "proj.3.weight" in ipadapter_model["image_proj"] or "latents" in ipadapter_model["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter_model["image_proj"] | |
is_kwai_kolors = is_plus and "layers.0.0.to_out.weight" in ipadapter_model["image_proj"] and ipadapter_model["image_proj"]["layers.0.0.to_out.weight"].shape[0] == 2048 | |
clipvision_size = 224 if not is_kwai_kolors else 336 | |
# resize and crop the mask to 224x224 | |
if mask is not None and mask.shape[1:3] != torch.Size([clipvision_size, clipvision_size]): | |
mask = mask.unsqueeze(1) | |
transforms = T.Compose([ | |
T.CenterCrop(min(mask.shape[2], mask.shape[3])), | |
T.Resize((clipvision_size, clipvision_size), interpolation=T.InterpolationMode.BICUBIC, antialias=True), | |
]) | |
mask = transforms(mask).squeeze(1) | |
#mask = T.Resize((image.shape[1], image.shape[2]), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(mask.unsqueeze(1)).squeeze(1) | |
img_cond_embeds = encode_image_masked(clip_vision, image, mask, clipvision_size=clipvision_size) | |
if is_plus: | |
img_cond_embeds = img_cond_embeds.penultimate_hidden_states | |
img_uncond_embeds = encode_image_masked(clip_vision, torch.zeros([1, clipvision_size, clipvision_size, 3]), clipvision_size=clipvision_size).penultimate_hidden_states | |
else: | |
img_cond_embeds = img_cond_embeds.image_embeds | |
img_uncond_embeds = torch.zeros_like(img_cond_embeds) | |
if weight != 1: | |
img_cond_embeds = img_cond_embeds * weight | |
return (img_cond_embeds, img_uncond_embeds, ) | |
class IPAdapterCombineEmbeds: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"embed1": ("EMBEDS",), | |
"method": (["concat", "add", "subtract", "average", "norm average", "max", "min"], ), | |
}, | |
"optional": { | |
"embed2": ("EMBEDS",), | |
"embed3": ("EMBEDS",), | |
"embed4": ("EMBEDS",), | |
"embed5": ("EMBEDS",), | |
}} | |
RETURN_TYPES = ("EMBEDS",) | |
FUNCTION = "batch" | |
CATEGORY = "ipadapter/embeds" | |
def batch(self, embed1, method, embed2=None, embed3=None, embed4=None, embed5=None): | |
if method=='concat' and embed2 is None and embed3 is None and embed4 is None and embed5 is None: | |
return (embed1, ) | |
embeds = [embed1, embed2, embed3, embed4, embed5] | |
embeds = [embed for embed in embeds if embed is not None] | |
embeds = torch.cat(embeds, dim=0) | |
if method == "add": | |
embeds = torch.sum(embeds, dim=0).unsqueeze(0) | |
elif method == "subtract": | |
embeds = embeds[0] - torch.mean(embeds[1:], dim=0) | |
embeds = embeds.unsqueeze(0) | |
elif method == "average": | |
embeds = torch.mean(embeds, dim=0).unsqueeze(0) | |
elif method == "norm average": | |
embeds = torch.mean(embeds / torch.norm(embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) | |
elif method == "max": | |
embeds = torch.max(embeds, dim=0).values.unsqueeze(0) | |
elif method == "min": | |
embeds = torch.min(embeds, dim=0).values.unsqueeze(0) | |
return (embeds, ) | |
class IPAdapterNoise: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"type": (["fade", "dissolve", "gaussian", "shuffle"], ), | |
"strength": ("FLOAT", { "default": 1.0, "min": 0, "max": 1, "step": 0.05 }), | |
"blur": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1 }), | |
}, | |
"optional": { | |
"image_optional": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "make_noise" | |
CATEGORY = "ipadapter/utils" | |
def make_noise(self, type, strength, blur, image_optional=None): | |
if image_optional is None: | |
image = torch.zeros([1, 224, 224, 3]) | |
else: | |
transforms = T.Compose([ | |
T.CenterCrop(min(image_optional.shape[1], image_optional.shape[2])), | |
T.Resize((224, 224), interpolation=T.InterpolationMode.BICUBIC, antialias=True), | |
]) | |
image = transforms(image_optional.permute([0,3,1,2])).permute([0,2,3,1]) | |
seed = int(torch.sum(image).item()) % 1000000007 # hash the image to get a seed, grants predictability | |
torch.manual_seed(seed) | |
if type == "fade": | |
noise = torch.rand_like(image) | |
noise = image * (1 - strength) + noise * strength | |
elif type == "dissolve": | |
mask = (torch.rand_like(image) < strength).float() | |
noise = torch.rand_like(image) | |
noise = image * (1-mask) + noise * mask | |
elif type == "gaussian": | |
noise = torch.randn_like(image) * strength | |
noise = image + noise | |
elif type == "shuffle": | |
transforms = T.Compose([ | |
T.ElasticTransform(alpha=75.0, sigma=(1-strength)*3.5), | |
T.RandomVerticalFlip(p=1.0), | |
T.RandomHorizontalFlip(p=1.0), | |
]) | |
image = transforms(image.permute([0,3,1,2])).permute([0,2,3,1]) | |
noise = torch.randn_like(image) * (strength*0.75) | |
noise = image * (1-noise) + noise | |
del image | |
noise = torch.clamp(noise, 0, 1) | |
if blur > 0: | |
if blur % 2 == 0: | |
blur += 1 | |
noise = T.functional.gaussian_blur(noise.permute([0,3,1,2]), blur).permute([0,2,3,1]) | |
return (noise, ) | |
class PrepImageForClipVision: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"image": ("IMAGE",), | |
"interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],), | |
"crop_position": (["top", "bottom", "left", "right", "center", "pad"],), | |
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "prep_image" | |
CATEGORY = "ipadapter/utils" | |
def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0): | |
size = (224, 224) | |
_, oh, ow, _ = image.shape | |
output = image.permute([0,3,1,2]) | |
if crop_position == "pad": | |
if oh != ow: | |
if oh > ow: | |
pad = (oh - ow) // 2 | |
pad = (pad, 0, pad, 0) | |
elif ow > oh: | |
pad = (ow - oh) // 2 | |
pad = (0, pad, 0, pad) | |
output = T.functional.pad(output, pad, fill=0) | |
else: | |
crop_size = min(oh, ow) | |
x = (ow-crop_size) // 2 | |
y = (oh-crop_size) // 2 | |
if "top" in crop_position: | |
y = 0 | |
elif "bottom" in crop_position: | |
y = oh-crop_size | |
elif "left" in crop_position: | |
x = 0 | |
elif "right" in crop_position: | |
x = ow-crop_size | |
x2 = x+crop_size | |
y2 = y+crop_size | |
output = output[:, :, y:y2, x:x2] | |
imgs = [] | |
for img in output: | |
img = T.ToPILImage()(img) # using PIL for better results | |
img = img.resize(size, resample=Image.Resampling[interpolation]) | |
imgs.append(T.ToTensor()(img)) | |
output = torch.stack(imgs, dim=0) | |
del imgs, img | |
if sharpening > 0: | |
output = contrast_adaptive_sharpening(output, sharpening) | |
output = output.permute([0,2,3,1]) | |
return (output, ) | |
class IPAdapterSaveEmbeds: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
def INPUT_TYPES(s): | |
return {"required": { | |
"embeds": ("EMBEDS",), | |
"filename_prefix": ("STRING", {"default": "IP_embeds"}) | |
}, | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save" | |
OUTPUT_NODE = True | |
CATEGORY = "ipadapter/embeds" | |
def save(self, embeds, filename_prefix): | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
file = f"{filename}_{counter:05}.ipadpt" | |
file = os.path.join(full_output_folder, file) | |
torch.save(embeds, file) | |
return (None, ) | |
class IPAdapterLoadEmbeds: | |
def INPUT_TYPES(s): | |
input_dir = folder_paths.get_input_directory() | |
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')] | |
return {"required": {"embeds": [sorted(files), ]}, } | |
RETURN_TYPES = ("EMBEDS", ) | |
FUNCTION = "load" | |
CATEGORY = "ipadapter/embeds" | |
def load(self, embeds): | |
path = folder_paths.get_annotated_filepath(embeds) | |
return (torch.load(path).cpu(), ) | |
class IPAdapterWeights: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"weights": ("STRING", {"default": '1.0, 0.0', "multiline": True }), | |
"timing": (["custom", "linear", "ease_in_out", "ease_in", "ease_out", "random"], { "default": "linear" } ), | |
"frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), | |
"start_frame": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), | |
"end_frame": ("INT", {"default": 9999, "min": 0, "max": 9999, "step": 1 }), | |
"add_starting_frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), | |
"add_ending_frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), | |
"method": (["full batch", "shift batches", "alternate batches"], { "default": "full batch" }), | |
}, "optional": { | |
"image": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("FLOAT", "FLOAT", "INT", "IMAGE", "IMAGE", "WEIGHTS_STRATEGY") | |
RETURN_NAMES = ("weights", "weights_invert", "total_frames", "image_1", "image_2", "weights_strategy") | |
FUNCTION = "weights" | |
CATEGORY = "ipadapter/weights" | |
def weights(self, weights='', timing='custom', frames=0, start_frame=0, end_frame=9999, add_starting_frames=0, add_ending_frames=0, method='full batch', weights_strategy=None, image=None): | |
import random | |
frame_count = image.shape[0] if image is not None else 0 | |
if weights_strategy is not None: | |
weights = weights_strategy["weights"] | |
timing = weights_strategy["timing"] | |
frames = weights_strategy["frames"] | |
start_frame = weights_strategy["start_frame"] | |
end_frame = weights_strategy["end_frame"] | |
add_starting_frames = weights_strategy["add_starting_frames"] | |
add_ending_frames = weights_strategy["add_ending_frames"] | |
method = weights_strategy["method"] | |
frame_count = weights_strategy["frame_count"] | |
else: | |
weights_strategy = { | |
"weights": weights, | |
"timing": timing, | |
"frames": frames, | |
"start_frame": start_frame, | |
"end_frame": end_frame, | |
"add_starting_frames": add_starting_frames, | |
"add_ending_frames": add_ending_frames, | |
"method": method, | |
"frame_count": frame_count, | |
} | |
# convert the string to a list of floats separated by commas or newlines | |
weights = weights.replace("\n", ",") | |
weights = [float(weight) for weight in weights.split(",") if weight.strip() != ""] | |
if timing != "custom": | |
frames = max(frames, 2) | |
start = 0.0 | |
end = 1.0 | |
if len(weights) > 0: | |
start = weights[0] | |
end = weights[-1] | |
weights = [] | |
end_frame = min(end_frame, frames) | |
duration = end_frame - start_frame | |
if start_frame > 0: | |
weights.extend([start] * start_frame) | |
for i in range(duration): | |
n = duration - 1 | |
if timing == "linear": | |
weights.append(start + (end - start) * i / n) | |
elif timing == "ease_in_out": | |
weights.append(start + (end - start) * (1 - math.cos(i / n * math.pi)) / 2) | |
elif timing == "ease_in": | |
weights.append(start + (end - start) * math.sin(i / n * math.pi / 2)) | |
elif timing == "ease_out": | |
weights.append(start + (end - start) * (1 - math.cos(i / n * math.pi / 2))) | |
elif timing == "random": | |
weights.append(random.uniform(start, end)) | |
weights[-1] = end if timing != "random" else weights[-1] | |
if end_frame < frames: | |
weights.extend([end] * (frames - end_frame)) | |
if len(weights) == 0: | |
weights = [0.0] | |
frames = len(weights) | |
# repeat the images for cross fade | |
image_1 = None | |
image_2 = None | |
# Calculate the min and max of the weights | |
min_weight = min(weights) | |
max_weight = max(weights) | |
if image is not None: | |
if "shift" in method: | |
image_1 = image[:-1] | |
image_2 = image[1:] | |
weights = weights * image_1.shape[0] | |
image_1 = image_1.repeat_interleave(frames, 0) | |
image_2 = image_2.repeat_interleave(frames, 0) | |
elif "alternate" in method: | |
image_1 = image[::2].repeat_interleave(2, 0) | |
image_1 = image_1[1:] | |
image_2 = image[1::2].repeat_interleave(2, 0) | |
# Invert the weights relative to their own range | |
mew_weights = weights + [max_weight - (w - min_weight) for w in weights] | |
mew_weights = mew_weights * (image_1.shape[0] // 2) | |
if image.shape[0] % 2: | |
image_1 = image_1[:-1] | |
else: | |
image_2 = image_2[:-1] | |
mew_weights = mew_weights + weights | |
weights = mew_weights | |
image_1 = image_1.repeat_interleave(frames, 0) | |
image_2 = image_2.repeat_interleave(frames, 0) | |
else: | |
weights = weights * image.shape[0] | |
image_1 = image.repeat_interleave(frames, 0) | |
# add starting and ending frames | |
if add_starting_frames > 0: | |
weights = [weights[0]] * add_starting_frames + weights | |
image_1 = torch.cat([image[:1].repeat(add_starting_frames, 1, 1, 1), image_1], dim=0) | |
if image_2 is not None: | |
image_2 = torch.cat([image[:1].repeat(add_starting_frames, 1, 1, 1), image_2], dim=0) | |
if add_ending_frames > 0: | |
weights = weights + [weights[-1]] * add_ending_frames | |
image_1 = torch.cat([image_1, image[-1:].repeat(add_ending_frames, 1, 1, 1)], dim=0) | |
if image_2 is not None: | |
image_2 = torch.cat([image_2, image[-1:].repeat(add_ending_frames, 1, 1, 1)], dim=0) | |
# reverse the weights array | |
weights_invert = weights[::-1] | |
frame_count = len(weights) | |
return (weights, weights_invert, frame_count, image_1, image_2, weights_strategy,) | |
class IPAdapterWeightsFromStrategy(IPAdapterWeights): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"weights_strategy": ("WEIGHTS_STRATEGY",), | |
}, "optional": { | |
"image": ("IMAGE",), | |
} | |
} | |
class IPAdapterPromptScheduleFromWeightsStrategy(): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"weights_strategy": ("WEIGHTS_STRATEGY",), | |
"prompt": ("STRING", {"default": "", "multiline": True }), | |
}} | |
RETURN_TYPES = ("STRING",) | |
RETURN_NAMES = ("prompt_schedule", ) | |
FUNCTION = "prompt_schedule" | |
CATEGORY = "ipadapter/weights" | |
def prompt_schedule(self, weights_strategy, prompt=""): | |
frames = weights_strategy["frames"] | |
add_starting_frames = weights_strategy["add_starting_frames"] | |
add_ending_frames = weights_strategy["add_ending_frames"] | |
frame_count = weights_strategy["frame_count"] | |
out = "" | |
prompt = [p for p in prompt.split("\n") if p.strip() != ""] | |
if len(prompt) > 0 and frame_count > 0: | |
# prompt_pos must be the same size as the image batch | |
if len(prompt) > frame_count: | |
prompt = prompt[:frame_count] | |
elif len(prompt) < frame_count: | |
prompt += [prompt[-1]] * (frame_count - len(prompt)) | |
if add_starting_frames > 0: | |
out += f"\"0\": \"{prompt[0]}\",\n" | |
for i in range(frame_count): | |
out += f"\"{i * frames + add_starting_frames}\": \"{prompt[i]}\",\n" | |
if add_ending_frames > 0: | |
out += f"\"{frame_count * frames + add_starting_frames}\": \"{prompt[-1]}\",\n" | |
return (out, ) | |
class IPAdapterCombineWeights: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"weights_1": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
"weights_2": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
}} | |
RETURN_TYPES = ("FLOAT", "INT") | |
RETURN_NAMES = ("weights", "count") | |
FUNCTION = "combine" | |
CATEGORY = "ipadapter/utils" | |
def combine(self, weights_1, weights_2): | |
if not isinstance(weights_1, list): | |
weights_1 = [weights_1] | |
if not isinstance(weights_2, list): | |
weights_2 = [weights_2] | |
weights = weights_1 + weights_2 | |
return (weights, len(weights), ) | |
class IPAdapterRegionalConditioning: | |
def INPUT_TYPES(s): | |
return {"required": { | |
#"set_cond_area": (["default", "mask bounds"],), | |
"image": ("IMAGE",), | |
"image_weight": ("FLOAT", { "default": 1.0, "min": -1.0, "max": 3.0, "step": 0.05 }), | |
"prompt_weight": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 10.0, "step": 0.05 }), | |
"weight_type": (WEIGHT_TYPES, ), | |
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
}, "optional": { | |
"mask": ("MASK",), | |
"positive": ("CONDITIONING",), | |
"negative": ("CONDITIONING",), | |
}} | |
RETURN_TYPES = ("IPADAPTER_PARAMS", "CONDITIONING", "CONDITIONING", ) | |
RETURN_NAMES = ("IPADAPTER_PARAMS", "POSITIVE", "NEGATIVE") | |
FUNCTION = "conditioning" | |
CATEGORY = "ipadapter/params" | |
def conditioning(self, image, image_weight, prompt_weight, weight_type, start_at, end_at, mask=None, positive=None, negative=None): | |
set_area_to_bounds = False #if set_cond_area == "default" else True | |
if mask is not None: | |
if positive is not None: | |
positive = conditioning_set_values(positive, {"mask": mask, "set_area_to_bounds": set_area_to_bounds, "mask_strength": prompt_weight}) | |
if negative is not None: | |
negative = conditioning_set_values(negative, {"mask": mask, "set_area_to_bounds": set_area_to_bounds, "mask_strength": prompt_weight}) | |
ipadapter_params = { | |
"image": [image], | |
"attn_mask": [mask], | |
"weight": [image_weight], | |
"weight_type": [weight_type], | |
"start_at": [start_at], | |
"end_at": [end_at], | |
} | |
return (ipadapter_params, positive, negative, ) | |
class IPAdapterCombineParams: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"params_1": ("IPADAPTER_PARAMS",), | |
"params_2": ("IPADAPTER_PARAMS",), | |
}, "optional": { | |
"params_3": ("IPADAPTER_PARAMS",), | |
"params_4": ("IPADAPTER_PARAMS",), | |
"params_5": ("IPADAPTER_PARAMS",), | |
}} | |
RETURN_TYPES = ("IPADAPTER_PARAMS",) | |
FUNCTION = "combine" | |
CATEGORY = "ipadapter/params" | |
def combine(self, params_1, params_2, params_3=None, params_4=None, params_5=None): | |
ipadapter_params = { | |
"image": params_1["image"] + params_2["image"], | |
"attn_mask": params_1["attn_mask"] + params_2["attn_mask"], | |
"weight": params_1["weight"] + params_2["weight"], | |
"weight_type": params_1["weight_type"] + params_2["weight_type"], | |
"start_at": params_1["start_at"] + params_2["start_at"], | |
"end_at": params_1["end_at"] + params_2["end_at"], | |
} | |
if params_3 is not None: | |
ipadapter_params["image"] += params_3["image"] | |
ipadapter_params["attn_mask"] += params_3["attn_mask"] | |
ipadapter_params["weight"] += params_3["weight"] | |
ipadapter_params["weight_type"] += params_3["weight_type"] | |
ipadapter_params["start_at"] += params_3["start_at"] | |
ipadapter_params["end_at"] += params_3["end_at"] | |
if params_4 is not None: | |
ipadapter_params["image"] += params_4["image"] | |
ipadapter_params["attn_mask"] += params_4["attn_mask"] | |
ipadapter_params["weight"] += params_4["weight"] | |
ipadapter_params["weight_type"] += params_4["weight_type"] | |
ipadapter_params["start_at"] += params_4["start_at"] | |
ipadapter_params["end_at"] += params_4["end_at"] | |
if params_5 is not None: | |
ipadapter_params["image"] += params_5["image"] | |
ipadapter_params["attn_mask"] += params_5["attn_mask"] | |
ipadapter_params["weight"] += params_5["weight"] | |
ipadapter_params["weight_type"] += params_5["weight_type"] | |
ipadapter_params["start_at"] += params_5["start_at"] | |
ipadapter_params["end_at"] += params_5["end_at"] | |
return (ipadapter_params, ) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Register | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
NODE_CLASS_MAPPINGS = { | |
# Main Apply Nodes | |
"IPAdapter": IPAdapterSimple, | |
"IPAdapterAdvanced": IPAdapterAdvanced, | |
"IPAdapterBatch": IPAdapterBatch, | |
"IPAdapterFaceID": IPAdapterFaceID, | |
"IPAdapterFaceIDKolors": IPAdapterFaceIDKolors, | |
"IPAAdapterFaceIDBatch": IPAAdapterFaceIDBatch, | |
"IPAdapterTiled": IPAdapterTiled, | |
"IPAdapterTiledBatch": IPAdapterTiledBatch, | |
"IPAdapterEmbeds": IPAdapterEmbeds, | |
"IPAdapterEmbedsBatch": IPAdapterEmbedsBatch, | |
"IPAdapterStyleComposition": IPAdapterStyleComposition, | |
"IPAdapterStyleCompositionBatch": IPAdapterStyleCompositionBatch, | |
"IPAdapterMS": IPAdapterMS, | |
"IPAdapterClipVisionEnhancer": IPAdapterClipVisionEnhancer, | |
"IPAdapterClipVisionEnhancerBatch": IPAdapterClipVisionEnhancerBatch, | |
"IPAdapterFromParams": IPAdapterFromParams, | |
"IPAdapterPreciseStyleTransfer": IPAdapterPreciseStyleTransfer, | |
"IPAdapterPreciseStyleTransferBatch": IPAdapterPreciseStyleTransferBatch, | |
"IPAdapterPreciseComposition": IPAdapterPreciseComposition, | |
"IPAdapterPreciseCompositionBatch": IPAdapterPreciseCompositionBatch, | |
# Loaders | |
"IPAdapterUnifiedLoader": IPAdapterUnifiedLoader, | |
"IPAdapterUnifiedLoaderFaceID": IPAdapterUnifiedLoaderFaceID, | |
"IPAdapterModelLoader": IPAdapterModelLoader, | |
"IPAdapterInsightFaceLoader": IPAdapterInsightFaceLoader, | |
"IPAdapterUnifiedLoaderCommunity": IPAdapterUnifiedLoaderCommunity, | |
# Helpers | |
"IPAdapterEncoder": IPAdapterEncoder, | |
"IPAdapterCombineEmbeds": IPAdapterCombineEmbeds, | |
"IPAdapterNoise": IPAdapterNoise, | |
"PrepImageForClipVision": PrepImageForClipVision, | |
"IPAdapterSaveEmbeds": IPAdapterSaveEmbeds, | |
"IPAdapterLoadEmbeds": IPAdapterLoadEmbeds, | |
"IPAdapterWeights": IPAdapterWeights, | |
"IPAdapterCombineWeights": IPAdapterCombineWeights, | |
"IPAdapterWeightsFromStrategy": IPAdapterWeightsFromStrategy, | |
"IPAdapterPromptScheduleFromWeightsStrategy": IPAdapterPromptScheduleFromWeightsStrategy, | |
"IPAdapterRegionalConditioning": IPAdapterRegionalConditioning, | |
"IPAdapterCombineParams": IPAdapterCombineParams, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
# Main Apply Nodes | |
"IPAdapter": "IPAdapter", | |
"IPAdapterAdvanced": "IPAdapter Advanced", | |
"IPAdapterBatch": "IPAdapter Batch (Adv.)", | |
"IPAdapterFaceID": "IPAdapter FaceID", | |
"IPAdapterFaceIDKolors": "IPAdapter FaceID Kolors", | |
"IPAAdapterFaceIDBatch": "IPAdapter FaceID Batch", | |
"IPAdapterTiled": "IPAdapter Tiled", | |
"IPAdapterTiledBatch": "IPAdapter Tiled Batch", | |
"IPAdapterEmbeds": "IPAdapter Embeds", | |
"IPAdapterEmbedsBatch": "IPAdapter Embeds Batch", | |
"IPAdapterStyleComposition": "IPAdapter Style & Composition SDXL", | |
"IPAdapterStyleCompositionBatch": "IPAdapter Style & Composition Batch SDXL", | |
"IPAdapterMS": "IPAdapter Mad Scientist", | |
"IPAdapterClipVisionEnhancer": "IPAdapter ClipVision Enhancer", | |
"IPAdapterClipVisionEnhancerBatch": "IPAdapter ClipVision Enhancer Batch", | |
"IPAdapterFromParams": "IPAdapter from Params", | |
"IPAdapterPreciseStyleTransfer": "IPAdapter Precise Style Transfer", | |
"IPAdapterPreciseStyleTransferBatch": "IPAdapter Precise Style Transfer Batch", | |
"IPAdapterPreciseComposition": "IPAdapter Precise Composition", | |
"IPAdapterPreciseCompositionBatch": "IPAdapter Precise Composition Batch", | |
# Loaders | |
"IPAdapterUnifiedLoader": "IPAdapter Unified Loader", | |
"IPAdapterUnifiedLoaderFaceID": "IPAdapter Unified Loader FaceID", | |
"IPAdapterModelLoader": "IPAdapter Model Loader", | |
"IPAdapterInsightFaceLoader": "IPAdapter InsightFace Loader", | |
"IPAdapterUnifiedLoaderCommunity": "IPAdapter Unified Loader Community", | |
# Helpers | |
"IPAdapterEncoder": "IPAdapter Encoder", | |
"IPAdapterCombineEmbeds": "IPAdapter Combine Embeds", | |
"IPAdapterNoise": "IPAdapter Noise", | |
"PrepImageForClipVision": "Prep Image For ClipVision", | |
"IPAdapterSaveEmbeds": "IPAdapter Save Embeds", | |
"IPAdapterLoadEmbeds": "IPAdapter Load Embeds", | |
"IPAdapterWeights": "IPAdapter Weights", | |
"IPAdapterWeightsFromStrategy": "IPAdapter Weights From Strategy", | |
"IPAdapterPromptScheduleFromWeightsStrategy": "Prompt Schedule From Weights Strategy", | |
"IPAdapterCombineWeights": "IPAdapter Combine Weights", | |
"IPAdapterRegionalConditioning": "IPAdapter Regional Conditioning", | |
"IPAdapterCombineParams": "IPAdapter Combine Params", | |
} |