liveportrait_video / README.md
ganeshblank's picture
requirement
dd6463f verified
|
raw
history blame
5.55 kB
<h1 align="center">This is the modification of LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control for allowing video as a source </h1>
<br>
<div align="center">
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
<a href ='https://github.com/KwaiVGI/LivePortrait'>Official Liveportrait</a>
</div>
<br>
<p align="center">
<img src="./assets/docs/showcase2.gif" alt="showcase">
<br>
πŸ”₯ For more results, visit LivePortrait <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> πŸ”₯
</p>
## πŸ”₯ Getting Started
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait
# create env using conda
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait
# install dependencies with pip
pip install -r requirements.txt
```
### 2. Download pretrained weights
Download the pretrained weights from HuggingFace:
```bash
# you may need to run `git lfs install` first
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
```
Or, download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory 😊. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows:
```text
pretrained_weights
β”œβ”€β”€ insightface
β”‚ └── models
β”‚ └── buffalo_l
β”‚ β”œβ”€β”€ 2d106det.onnx
β”‚ └── det_10g.onnx
└── liveportrait
β”œβ”€β”€ base_models
β”‚ β”œβ”€β”€ appearance_feature_extractor.pth
β”‚ β”œβ”€β”€ motion_extractor.pth
β”‚ β”œβ”€β”€ spade_generator.pth
β”‚ └── warping_module.pth
β”œβ”€β”€ landmark.onnx
└── retargeting_models
└── stitching_retargeting_module.pth
```
### 3. Inference πŸš€
#### Fast hands-on
```bash
python inference.py
```
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
<p align="center">
<img src="./assets/docs/inference.gif" alt="image">
</p>
Or, you can change the input by specifying the `-s` and `-d` arguments:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
# disable pasting back to run faster
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
# more options to see
python inference.py -h
```
For video: you can change the input by specifying the `-sd` and `-d` arguments:
```bash
python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True
# disable pasting back to run faster
python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True --no_flag_pasteback
```
#### Driving video auto-cropping
πŸ“• To use your own driving video, we **recommend**:
- Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
- Focus on the head area, similar to the example videos.
- Minimize shoulder movement.
- Make sure the first frame of driving video is a frontal face with **neutral expression**.
Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
```
If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.
#### Template making
You can also use the `.pkl` file auto-generated to speed up the inference, and **protect privacy**, such as:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
```
**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊
### 4. Gradio interface πŸ€—
We also provide a Gradio interface for a better experience, just run by:
```bash
python app.py
```
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
## Acknowledgements
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface), [LivePortrait](https://github.com/KwaiVGI/LivePortrait) repositories, for their open research and contributions.
## Citation πŸ’–
```bibtex
@article{guo2024liveportrait,
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
journal = {arXiv preprint arXiv:2407.03168},
year = {2024}
}
```