Spaces:
Runtime error
Runtime error
<h1 align="center">This is the modification of LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control for allowing video as a source </h1> | |
<br> | |
<div align="center"> | |
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> --> | |
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a> | |
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a> | |
<a href ='https://github.com/KwaiVGI/LivePortrait'>Official Liveportrait</a> | |
</div> | |
<br> | |
<p align="center"> | |
<img src="./assets/docs/showcase2.gif" alt="showcase"> | |
<br> | |
π₯ For more results, visit LivePortrait <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> π₯ | |
</p> | |
## π₯ Getting Started | |
### 1. Clone the code and prepare the environment | |
```bash | |
git clone https://github.com/KwaiVGI/LivePortrait | |
cd LivePortrait | |
# create env using conda | |
conda create -n LivePortrait python==3.9.18 | |
conda activate LivePortrait | |
# install dependencies with pip | |
pip install -r requirements.txt | |
``` | |
### 2. Download pretrained weights | |
Download the pretrained weights from HuggingFace: | |
```bash | |
# you may need to run `git lfs install` first | |
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights | |
``` | |
Or, download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory π. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows: | |
```text | |
pretrained_weights | |
βββ insightface | |
β βββ models | |
β βββ buffalo_l | |
β βββ 2d106det.onnx | |
β βββ det_10g.onnx | |
βββ liveportrait | |
βββ base_models | |
β βββ appearance_feature_extractor.pth | |
β βββ motion_extractor.pth | |
β βββ spade_generator.pth | |
β βββ warping_module.pth | |
βββ landmark.onnx | |
βββ retargeting_models | |
βββ stitching_retargeting_module.pth | |
``` | |
### 3. Inference π | |
#### Fast hands-on | |
```bash | |
python inference.py | |
``` | |
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result. | |
<p align="center"> | |
<img src="./assets/docs/inference.gif" alt="image"> | |
</p> | |
Or, you can change the input by specifying the `-s` and `-d` arguments: | |
```bash | |
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 | |
# disable pasting back to run faster | |
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback | |
# more options to see | |
python inference.py -h | |
``` | |
For video: you can change the input by specifying the `-sd` and `-d` arguments: | |
```bash | |
python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True | |
# disable pasting back to run faster | |
python inference.py -sd assets/examples/driving/d3.mp4 -d assets/examples/driving/d0.mp4 -vd True --no_flag_pasteback | |
``` | |
#### Driving video auto-cropping | |
π To use your own driving video, we **recommend**: | |
- Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`. | |
- Focus on the head area, similar to the example videos. | |
- Minimize shoulder movement. | |
- Make sure the first frame of driving video is a frontal face with **neutral expression**. | |
Below is a auto-cropping case by `--flag_crop_driving_video`: | |
```bash | |
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video | |
``` | |
If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually. | |
#### Template making | |
You can also use the `.pkl` file auto-generated to speed up the inference, and **protect privacy**, such as: | |
```bash | |
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl | |
``` | |
**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** π | |
### 4. Gradio interface π€ | |
We also provide a Gradio interface for a better experience, just run by: | |
```bash | |
python app.py | |
``` | |
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs! | |
## Acknowledgements | |
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface), [LivePortrait](https://github.com/KwaiVGI/LivePortrait) repositories, for their open research and contributions. | |
## Citation π | |
```bibtex | |
@article{guo2024liveportrait, | |
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control}, | |
author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di}, | |
journal = {arXiv preprint arXiv:2407.03168}, | |
year = {2024} | |
} | |
``` | |