Spaces:
Runtime error
Runtime error
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def predict_step(image): | |
i_image = Image.fromarray(np.uint8(image)) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
pixel_values = feature_extractor(images=i_image, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
iface = gr.Interface(fn=predict_step, | |
inputs=gr.inputs.Image(shape=(224, 224)), | |
outputs=gr.outputs.Textbox(label="Generated Caption")) | |
iface.launch(share=True) | |