Leffa / detectron2 /utils /testing.py
franciszzj's picture
init code
b213d84
# Copyright (c) Facebook, Inc. and its affiliates.
import io
import numpy as np
import os
import re
import tempfile
import unittest
from typing import Callable
import torch
import torch.onnx.symbolic_helper as sym_help
from packaging import version
from torch._C import ListType
from torch.onnx import register_custom_op_symbolic
from detectron2 import model_zoo
from detectron2.config import CfgNode, LazyConfig, instantiate
from detectron2.data import DatasetCatalog
from detectron2.data.detection_utils import read_image
from detectron2.modeling import build_model
from detectron2.structures import Boxes, Instances, ROIMasks
from detectron2.utils.file_io import PathManager
"""
Internal utilities for tests. Don't use except for writing tests.
"""
def get_model_no_weights(config_path):
"""
Like model_zoo.get, but do not load any weights (even pretrained)
"""
cfg = model_zoo.get_config(config_path)
if isinstance(cfg, CfgNode):
if not torch.cuda.is_available():
cfg.MODEL.DEVICE = "cpu"
return build_model(cfg)
else:
return instantiate(cfg.model)
def random_boxes(num_boxes, max_coord=100, device="cpu"):
"""
Create a random Nx4 boxes tensor, with coordinates < max_coord.
"""
boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5)
boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression
# Note: the implementation of this function in torchvision is:
# boxes[:, 2:] += torch.rand(N, 2) * 100
# but it does not guarantee non-negative widths/heights constraints:
# boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]:
boxes[:, 2:] += boxes[:, :2]
return boxes
def get_sample_coco_image(tensor=True):
"""
Args:
tensor (bool): if True, returns 3xHxW tensor.
else, returns a HxWx3 numpy array.
Returns:
an image, in BGR color.
"""
try:
file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"]
if not PathManager.exists(file_name):
raise FileNotFoundError()
except IOError:
# for public CI to run
file_name = PathManager.get_local_path(
"http://images.cocodataset.org/train2017/000000000009.jpg"
)
ret = read_image(file_name, format="BGR")
if tensor:
ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1)))
return ret
def convert_scripted_instances(instances):
"""
Convert a scripted Instances object to a regular :class:`Instances` object
"""
assert hasattr(
instances, "image_size"
), f"Expect an Instances object, but got {type(instances)}!"
ret = Instances(instances.image_size)
for name in instances._field_names:
val = getattr(instances, "_" + name, None)
if val is not None:
ret.set(name, val)
return ret
def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False):
"""
Args:
input, other (Instances):
size_as_tensor: compare image_size of the Instances as tensors (instead of tuples).
Useful for comparing outputs of tracing.
"""
if not isinstance(input, Instances):
input = convert_scripted_instances(input)
if not isinstance(other, Instances):
other = convert_scripted_instances(other)
if not msg:
msg = "Two Instances are different! "
else:
msg = msg.rstrip() + " "
size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!"
if size_as_tensor:
assert torch.equal(
torch.tensor(input.image_size), torch.tensor(other.image_size)
), size_error_msg
else:
assert input.image_size == other.image_size, size_error_msg
fields = sorted(input.get_fields().keys())
fields_other = sorted(other.get_fields().keys())
assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!"
for f in fields:
val1, val2 = input.get(f), other.get(f)
if isinstance(val1, (Boxes, ROIMasks)):
# boxes in the range of O(100) and can have a larger tolerance
assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), (
msg + f"Field {f} differs too much!"
)
elif isinstance(val1, torch.Tensor):
if val1.dtype.is_floating_point:
mag = torch.abs(val1).max().cpu().item()
assert torch.allclose(val1, val2, atol=mag * rtol), (
msg + f"Field {f} differs too much!"
)
else:
assert torch.equal(val1, val2), msg + f"Field {f} is different!"
else:
raise ValueError(f"Don't know how to compare type {type(val1)}")
def reload_script_model(module):
"""
Save a jit module and load it back.
Similar to the `getExportImportCopy` function in torch/testing/
"""
buffer = io.BytesIO()
torch.jit.save(module, buffer)
buffer.seek(0)
return torch.jit.load(buffer)
def reload_lazy_config(cfg):
"""
Save an object by LazyConfig.save and load it back.
This is used to test that a config still works the same after
serialization/deserialization.
"""
with tempfile.TemporaryDirectory(prefix="detectron2") as d:
fname = os.path.join(d, "d2_cfg_test.yaml")
LazyConfig.save(cfg, fname)
return LazyConfig.load(fname)
def min_torch_version(min_version: str) -> bool:
"""
Returns True when torch's version is at least `min_version`.
"""
try:
import torch
except ImportError:
return False
installed_version = version.parse(torch.__version__.split("+")[0])
min_version = version.parse(min_version)
return installed_version >= min_version
def has_dynamic_axes(onnx_model):
"""
Return True when all ONNX input/output have only dynamic axes for all ranks
"""
return all(
not dim.dim_param.isnumeric()
for inp in onnx_model.graph.input
for dim in inp.type.tensor_type.shape.dim
) and all(
not dim.dim_param.isnumeric()
for out in onnx_model.graph.output
for dim in out.type.tensor_type.shape.dim
)
def register_custom_op_onnx_export(
opname: str, symbolic_fn: Callable, opset_version: int, min_version: str
) -> None:
"""
Register `symbolic_fn` as PyTorch's symbolic `opname`-`opset_version` for ONNX export.
The registration is performed only when current PyTorch's version is < `min_version.`
IMPORTANT: symbolic must be manually unregistered after the caller function returns
"""
if min_torch_version(min_version):
return
register_custom_op_symbolic(opname, symbolic_fn, opset_version)
print(f"_register_custom_op_onnx_export({opname}, {opset_version}) succeeded.")
def unregister_custom_op_onnx_export(opname: str, opset_version: int, min_version: str) -> None:
"""
Unregister PyTorch's symbolic `opname`-`opset_version` for ONNX export.
The un-registration is performed only when PyTorch's version is < `min_version`
IMPORTANT: The symbolic must have been manually registered by the caller, otherwise
the incorrect symbolic may be unregistered instead.
"""
# TODO: _unregister_custom_op_symbolic is introduced PyTorch>=1.10
# Remove after PyTorch 1.10+ is used by ALL detectron2's CI
try:
from torch.onnx import unregister_custom_op_symbolic as _unregister_custom_op_symbolic
except ImportError:
def _unregister_custom_op_symbolic(symbolic_name, opset_version):
import torch.onnx.symbolic_registry as sym_registry
from torch.onnx.symbolic_helper import _onnx_main_opset, _onnx_stable_opsets
def _get_ns_op_name_from_custom_op(symbolic_name):
try:
from torch.onnx.utils import get_ns_op_name_from_custom_op
ns, op_name = get_ns_op_name_from_custom_op(symbolic_name)
except ImportError as import_error:
if not bool(
re.match(r"^[a-zA-Z0-9-_]*::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name)
):
raise ValueError(
f"Invalid symbolic name {symbolic_name}. Must be `domain::name`"
) from import_error
ns, op_name = symbolic_name.split("::")
if ns == "onnx":
raise ValueError(f"{ns} domain cannot be modified.") from import_error
if ns == "aten":
ns = ""
return ns, op_name
def _unregister_op(opname: str, domain: str, version: int):
try:
sym_registry.unregister_op(op_name, ns, ver)
except AttributeError as attribute_error:
if sym_registry.is_registered_op(opname, domain, version):
del sym_registry._registry[(domain, version)][opname]
if not sym_registry._registry[(domain, version)]:
del sym_registry._registry[(domain, version)]
else:
raise RuntimeError(
f"The opname {opname} is not registered."
) from attribute_error
ns, op_name = _get_ns_op_name_from_custom_op(symbolic_name)
for ver in _onnx_stable_opsets + [_onnx_main_opset]:
if ver >= opset_version:
_unregister_op(op_name, ns, ver)
if min_torch_version(min_version):
return
_unregister_custom_op_symbolic(opname, opset_version)
print(f"_unregister_custom_op_onnx_export({opname}, {opset_version}) succeeded.")
skipIfOnCPUCI = unittest.skipIf(
os.environ.get("CI") and not torch.cuda.is_available(),
"The test is too slow on CPUs and will be executed on CircleCI's GPU jobs.",
)
def skipIfUnsupportedMinOpsetVersion(min_opset_version, current_opset_version=None):
"""
Skips tests for ONNX Opset versions older than min_opset_version.
"""
def skip_dec(func):
def wrapper(self):
try:
opset_version = self.opset_version
except AttributeError:
opset_version = current_opset_version
if opset_version < min_opset_version:
raise unittest.SkipTest(
f"Unsupported opset_version {opset_version}"
f", required is {min_opset_version}"
)
return func(self)
return wrapper
return skip_dec
def skipIfUnsupportedMinTorchVersion(min_version):
"""
Skips tests for PyTorch versions older than min_version.
"""
reason = f"module 'torch' has __version__ {torch.__version__}" f", required is: {min_version}"
return unittest.skipIf(not min_torch_version(min_version), reason)
# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI
def _pytorch1111_symbolic_opset9_to(g, self, *args):
"""aten::to() symbolic that must be used for testing with PyTorch < 1.11.1."""
def is_aten_to_device_only(args):
if len(args) == 4:
# aten::to(Tensor, Device, bool, bool, memory_format)
return (
args[0].node().kind() == "prim::device"
or args[0].type().isSubtypeOf(ListType.ofInts())
or (
sym_help._is_value(args[0])
and args[0].node().kind() == "onnx::Constant"
and isinstance(args[0].node()["value"], str)
)
)
elif len(args) == 5:
# aten::to(Tensor, Device, ScalarType, bool, bool, memory_format)
# When dtype is None, this is a aten::to(device) call
dtype = sym_help._get_const(args[1], "i", "dtype")
return dtype is None
elif len(args) in (6, 7):
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format)
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format)
# When dtype is None, this is a aten::to(device) call
dtype = sym_help._get_const(args[0], "i", "dtype")
return dtype is None
return False
# ONNX doesn't have a concept of a device, so we ignore device-only casts
if is_aten_to_device_only(args):
return self
if len(args) == 4:
# TestONNXRuntime::test_ones_bool shows args[0] of aten::to can be onnx::Constant[Tensor]
# In this case, the constant value is a tensor not int,
# so sym_help._maybe_get_const(args[0], 'i') would not work.
dtype = args[0]
if sym_help._is_value(args[0]) and args[0].node().kind() == "onnx::Constant":
tval = args[0].node()["value"]
if isinstance(tval, torch.Tensor):
if len(tval.shape) == 0:
tval = tval.item()
dtype = int(tval)
else:
dtype = tval
if sym_help._is_value(dtype) or isinstance(dtype, torch.Tensor):
# aten::to(Tensor, Tensor, bool, bool, memory_format)
dtype = args[0].type().scalarType()
return g.op("Cast", self, to_i=sym_help.cast_pytorch_to_onnx[dtype])
else:
# aten::to(Tensor, ScalarType, bool, bool, memory_format)
# memory_format is ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
elif len(args) == 5:
# aten::to(Tensor, Device, ScalarType, bool, bool, memory_format)
dtype = sym_help._get_const(args[1], "i", "dtype")
# memory_format is ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
elif len(args) == 6:
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format)
dtype = sym_help._get_const(args[0], "i", "dtype")
# Layout, device and memory_format are ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
elif len(args) == 7:
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format)
dtype = sym_help._get_const(args[0], "i", "dtype")
# Layout, device and memory_format are ignored
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
else:
return sym_help._onnx_unsupported("Unknown aten::to signature")
# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI
def _pytorch1111_symbolic_opset9_repeat_interleave(g, self, repeats, dim=None, output_size=None):
# from torch.onnx.symbolic_helper import ScalarType
from torch.onnx.symbolic_opset9 import expand, unsqueeze
input = self
# if dim is None flatten
# By default, use the flattened input array, and return a flat output array
if sym_help._is_none(dim):
input = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1])))
dim = 0
else:
dim = sym_help._maybe_get_scalar(dim)
repeats_dim = sym_help._get_tensor_rank(repeats)
repeats_sizes = sym_help._get_tensor_sizes(repeats)
input_sizes = sym_help._get_tensor_sizes(input)
if repeats_dim is None:
raise RuntimeError(
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats rank."
)
if repeats_sizes is None:
raise RuntimeError(
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats size."
)
if input_sizes is None:
raise RuntimeError(
"Unsupported: ONNX export of repeat_interleave for unknown " "input size."
)
input_sizes_temp = input_sizes.copy()
for idx, input_size in enumerate(input_sizes):
if input_size is None:
input_sizes[idx], input_sizes_temp[idx] = 0, -1
# Cases where repeats is an int or single value tensor
if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1):
if not sym_help._is_tensor(repeats):
repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
if input_sizes[dim] == 0:
return sym_help._onnx_opset_unsupported_detailed(
"repeat_interleave",
9,
13,
"Unsupported along dimension with unknown input size",
)
else:
reps = input_sizes[dim]
repeats = expand(g, repeats, g.op("Constant", value_t=torch.tensor([reps])), None)
# Cases where repeats is a 1 dim Tensor
elif repeats_dim == 1:
if input_sizes[dim] == 0:
return sym_help._onnx_opset_unsupported_detailed(
"repeat_interleave",
9,
13,
"Unsupported along dimension with unknown input size",
)
if repeats_sizes[0] is None:
return sym_help._onnx_opset_unsupported_detailed(
"repeat_interleave", 9, 13, "Unsupported for cases with dynamic repeats"
)
assert (
repeats_sizes[0] == input_sizes[dim]
), "repeats must have the same size as input along dim"
reps = repeats_sizes[0]
else:
raise RuntimeError("repeats must be 0-dim or 1-dim tensor")
final_splits = list()
r_splits = sym_help._repeat_interleave_split_helper(g, repeats, reps, 0)
if isinstance(r_splits, torch._C.Value):
r_splits = [r_splits]
i_splits = sym_help._repeat_interleave_split_helper(g, input, reps, dim)
if isinstance(i_splits, torch._C.Value):
i_splits = [i_splits]
input_sizes[dim], input_sizes_temp[dim] = -1, 1
for idx, r_split in enumerate(r_splits):
i_split = unsqueeze(g, i_splits[idx], dim + 1)
r_concat = [
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[: dim + 1])),
r_split,
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[dim + 1 :])),
]
r_concat = g.op("Concat", *r_concat, axis_i=0)
i_split = expand(g, i_split, r_concat, None)
i_split = sym_help._reshape_helper(
g,
i_split,
g.op("Constant", value_t=torch.LongTensor(input_sizes)),
allowzero=0,
)
final_splits.append(i_split)
return g.op("Concat", *final_splits, axis_i=dim)