Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
import io | |
import numpy as np | |
import os | |
import re | |
import tempfile | |
import unittest | |
from typing import Callable | |
import torch | |
import torch.onnx.symbolic_helper as sym_help | |
from packaging import version | |
from torch._C import ListType | |
from torch.onnx import register_custom_op_symbolic | |
from detectron2 import model_zoo | |
from detectron2.config import CfgNode, LazyConfig, instantiate | |
from detectron2.data import DatasetCatalog | |
from detectron2.data.detection_utils import read_image | |
from detectron2.modeling import build_model | |
from detectron2.structures import Boxes, Instances, ROIMasks | |
from detectron2.utils.file_io import PathManager | |
""" | |
Internal utilities for tests. Don't use except for writing tests. | |
""" | |
def get_model_no_weights(config_path): | |
""" | |
Like model_zoo.get, but do not load any weights (even pretrained) | |
""" | |
cfg = model_zoo.get_config(config_path) | |
if isinstance(cfg, CfgNode): | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cpu" | |
return build_model(cfg) | |
else: | |
return instantiate(cfg.model) | |
def random_boxes(num_boxes, max_coord=100, device="cpu"): | |
""" | |
Create a random Nx4 boxes tensor, with coordinates < max_coord. | |
""" | |
boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5) | |
boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression | |
# Note: the implementation of this function in torchvision is: | |
# boxes[:, 2:] += torch.rand(N, 2) * 100 | |
# but it does not guarantee non-negative widths/heights constraints: | |
# boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]: | |
boxes[:, 2:] += boxes[:, :2] | |
return boxes | |
def get_sample_coco_image(tensor=True): | |
""" | |
Args: | |
tensor (bool): if True, returns 3xHxW tensor. | |
else, returns a HxWx3 numpy array. | |
Returns: | |
an image, in BGR color. | |
""" | |
try: | |
file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"] | |
if not PathManager.exists(file_name): | |
raise FileNotFoundError() | |
except IOError: | |
# for public CI to run | |
file_name = PathManager.get_local_path( | |
"http://images.cocodataset.org/train2017/000000000009.jpg" | |
) | |
ret = read_image(file_name, format="BGR") | |
if tensor: | |
ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1))) | |
return ret | |
def convert_scripted_instances(instances): | |
""" | |
Convert a scripted Instances object to a regular :class:`Instances` object | |
""" | |
assert hasattr( | |
instances, "image_size" | |
), f"Expect an Instances object, but got {type(instances)}!" | |
ret = Instances(instances.image_size) | |
for name in instances._field_names: | |
val = getattr(instances, "_" + name, None) | |
if val is not None: | |
ret.set(name, val) | |
return ret | |
def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False): | |
""" | |
Args: | |
input, other (Instances): | |
size_as_tensor: compare image_size of the Instances as tensors (instead of tuples). | |
Useful for comparing outputs of tracing. | |
""" | |
if not isinstance(input, Instances): | |
input = convert_scripted_instances(input) | |
if not isinstance(other, Instances): | |
other = convert_scripted_instances(other) | |
if not msg: | |
msg = "Two Instances are different! " | |
else: | |
msg = msg.rstrip() + " " | |
size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!" | |
if size_as_tensor: | |
assert torch.equal( | |
torch.tensor(input.image_size), torch.tensor(other.image_size) | |
), size_error_msg | |
else: | |
assert input.image_size == other.image_size, size_error_msg | |
fields = sorted(input.get_fields().keys()) | |
fields_other = sorted(other.get_fields().keys()) | |
assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!" | |
for f in fields: | |
val1, val2 = input.get(f), other.get(f) | |
if isinstance(val1, (Boxes, ROIMasks)): | |
# boxes in the range of O(100) and can have a larger tolerance | |
assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), ( | |
msg + f"Field {f} differs too much!" | |
) | |
elif isinstance(val1, torch.Tensor): | |
if val1.dtype.is_floating_point: | |
mag = torch.abs(val1).max().cpu().item() | |
assert torch.allclose(val1, val2, atol=mag * rtol), ( | |
msg + f"Field {f} differs too much!" | |
) | |
else: | |
assert torch.equal(val1, val2), msg + f"Field {f} is different!" | |
else: | |
raise ValueError(f"Don't know how to compare type {type(val1)}") | |
def reload_script_model(module): | |
""" | |
Save a jit module and load it back. | |
Similar to the `getExportImportCopy` function in torch/testing/ | |
""" | |
buffer = io.BytesIO() | |
torch.jit.save(module, buffer) | |
buffer.seek(0) | |
return torch.jit.load(buffer) | |
def reload_lazy_config(cfg): | |
""" | |
Save an object by LazyConfig.save and load it back. | |
This is used to test that a config still works the same after | |
serialization/deserialization. | |
""" | |
with tempfile.TemporaryDirectory(prefix="detectron2") as d: | |
fname = os.path.join(d, "d2_cfg_test.yaml") | |
LazyConfig.save(cfg, fname) | |
return LazyConfig.load(fname) | |
def min_torch_version(min_version: str) -> bool: | |
""" | |
Returns True when torch's version is at least `min_version`. | |
""" | |
try: | |
import torch | |
except ImportError: | |
return False | |
installed_version = version.parse(torch.__version__.split("+")[0]) | |
min_version = version.parse(min_version) | |
return installed_version >= min_version | |
def has_dynamic_axes(onnx_model): | |
""" | |
Return True when all ONNX input/output have only dynamic axes for all ranks | |
""" | |
return all( | |
not dim.dim_param.isnumeric() | |
for inp in onnx_model.graph.input | |
for dim in inp.type.tensor_type.shape.dim | |
) and all( | |
not dim.dim_param.isnumeric() | |
for out in onnx_model.graph.output | |
for dim in out.type.tensor_type.shape.dim | |
) | |
def register_custom_op_onnx_export( | |
opname: str, symbolic_fn: Callable, opset_version: int, min_version: str | |
) -> None: | |
""" | |
Register `symbolic_fn` as PyTorch's symbolic `opname`-`opset_version` for ONNX export. | |
The registration is performed only when current PyTorch's version is < `min_version.` | |
IMPORTANT: symbolic must be manually unregistered after the caller function returns | |
""" | |
if min_torch_version(min_version): | |
return | |
register_custom_op_symbolic(opname, symbolic_fn, opset_version) | |
print(f"_register_custom_op_onnx_export({opname}, {opset_version}) succeeded.") | |
def unregister_custom_op_onnx_export(opname: str, opset_version: int, min_version: str) -> None: | |
""" | |
Unregister PyTorch's symbolic `opname`-`opset_version` for ONNX export. | |
The un-registration is performed only when PyTorch's version is < `min_version` | |
IMPORTANT: The symbolic must have been manually registered by the caller, otherwise | |
the incorrect symbolic may be unregistered instead. | |
""" | |
# TODO: _unregister_custom_op_symbolic is introduced PyTorch>=1.10 | |
# Remove after PyTorch 1.10+ is used by ALL detectron2's CI | |
try: | |
from torch.onnx import unregister_custom_op_symbolic as _unregister_custom_op_symbolic | |
except ImportError: | |
def _unregister_custom_op_symbolic(symbolic_name, opset_version): | |
import torch.onnx.symbolic_registry as sym_registry | |
from torch.onnx.symbolic_helper import _onnx_main_opset, _onnx_stable_opsets | |
def _get_ns_op_name_from_custom_op(symbolic_name): | |
try: | |
from torch.onnx.utils import get_ns_op_name_from_custom_op | |
ns, op_name = get_ns_op_name_from_custom_op(symbolic_name) | |
except ImportError as import_error: | |
if not bool( | |
re.match(r"^[a-zA-Z0-9-_]*::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name) | |
): | |
raise ValueError( | |
f"Invalid symbolic name {symbolic_name}. Must be `domain::name`" | |
) from import_error | |
ns, op_name = symbolic_name.split("::") | |
if ns == "onnx": | |
raise ValueError(f"{ns} domain cannot be modified.") from import_error | |
if ns == "aten": | |
ns = "" | |
return ns, op_name | |
def _unregister_op(opname: str, domain: str, version: int): | |
try: | |
sym_registry.unregister_op(op_name, ns, ver) | |
except AttributeError as attribute_error: | |
if sym_registry.is_registered_op(opname, domain, version): | |
del sym_registry._registry[(domain, version)][opname] | |
if not sym_registry._registry[(domain, version)]: | |
del sym_registry._registry[(domain, version)] | |
else: | |
raise RuntimeError( | |
f"The opname {opname} is not registered." | |
) from attribute_error | |
ns, op_name = _get_ns_op_name_from_custom_op(symbolic_name) | |
for ver in _onnx_stable_opsets + [_onnx_main_opset]: | |
if ver >= opset_version: | |
_unregister_op(op_name, ns, ver) | |
if min_torch_version(min_version): | |
return | |
_unregister_custom_op_symbolic(opname, opset_version) | |
print(f"_unregister_custom_op_onnx_export({opname}, {opset_version}) succeeded.") | |
skipIfOnCPUCI = unittest.skipIf( | |
os.environ.get("CI") and not torch.cuda.is_available(), | |
"The test is too slow on CPUs and will be executed on CircleCI's GPU jobs.", | |
) | |
def skipIfUnsupportedMinOpsetVersion(min_opset_version, current_opset_version=None): | |
""" | |
Skips tests for ONNX Opset versions older than min_opset_version. | |
""" | |
def skip_dec(func): | |
def wrapper(self): | |
try: | |
opset_version = self.opset_version | |
except AttributeError: | |
opset_version = current_opset_version | |
if opset_version < min_opset_version: | |
raise unittest.SkipTest( | |
f"Unsupported opset_version {opset_version}" | |
f", required is {min_opset_version}" | |
) | |
return func(self) | |
return wrapper | |
return skip_dec | |
def skipIfUnsupportedMinTorchVersion(min_version): | |
""" | |
Skips tests for PyTorch versions older than min_version. | |
""" | |
reason = f"module 'torch' has __version__ {torch.__version__}" f", required is: {min_version}" | |
return unittest.skipIf(not min_torch_version(min_version), reason) | |
# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI | |
def _pytorch1111_symbolic_opset9_to(g, self, *args): | |
"""aten::to() symbolic that must be used for testing with PyTorch < 1.11.1.""" | |
def is_aten_to_device_only(args): | |
if len(args) == 4: | |
# aten::to(Tensor, Device, bool, bool, memory_format) | |
return ( | |
args[0].node().kind() == "prim::device" | |
or args[0].type().isSubtypeOf(ListType.ofInts()) | |
or ( | |
sym_help._is_value(args[0]) | |
and args[0].node().kind() == "onnx::Constant" | |
and isinstance(args[0].node()["value"], str) | |
) | |
) | |
elif len(args) == 5: | |
# aten::to(Tensor, Device, ScalarType, bool, bool, memory_format) | |
# When dtype is None, this is a aten::to(device) call | |
dtype = sym_help._get_const(args[1], "i", "dtype") | |
return dtype is None | |
elif len(args) in (6, 7): | |
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format) | |
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format) | |
# When dtype is None, this is a aten::to(device) call | |
dtype = sym_help._get_const(args[0], "i", "dtype") | |
return dtype is None | |
return False | |
# ONNX doesn't have a concept of a device, so we ignore device-only casts | |
if is_aten_to_device_only(args): | |
return self | |
if len(args) == 4: | |
# TestONNXRuntime::test_ones_bool shows args[0] of aten::to can be onnx::Constant[Tensor] | |
# In this case, the constant value is a tensor not int, | |
# so sym_help._maybe_get_const(args[0], 'i') would not work. | |
dtype = args[0] | |
if sym_help._is_value(args[0]) and args[0].node().kind() == "onnx::Constant": | |
tval = args[0].node()["value"] | |
if isinstance(tval, torch.Tensor): | |
if len(tval.shape) == 0: | |
tval = tval.item() | |
dtype = int(tval) | |
else: | |
dtype = tval | |
if sym_help._is_value(dtype) or isinstance(dtype, torch.Tensor): | |
# aten::to(Tensor, Tensor, bool, bool, memory_format) | |
dtype = args[0].type().scalarType() | |
return g.op("Cast", self, to_i=sym_help.cast_pytorch_to_onnx[dtype]) | |
else: | |
# aten::to(Tensor, ScalarType, bool, bool, memory_format) | |
# memory_format is ignored | |
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) | |
elif len(args) == 5: | |
# aten::to(Tensor, Device, ScalarType, bool, bool, memory_format) | |
dtype = sym_help._get_const(args[1], "i", "dtype") | |
# memory_format is ignored | |
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) | |
elif len(args) == 6: | |
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format) | |
dtype = sym_help._get_const(args[0], "i", "dtype") | |
# Layout, device and memory_format are ignored | |
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) | |
elif len(args) == 7: | |
# aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format) | |
dtype = sym_help._get_const(args[0], "i", "dtype") | |
# Layout, device and memory_format are ignored | |
return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) | |
else: | |
return sym_help._onnx_unsupported("Unknown aten::to signature") | |
# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI | |
def _pytorch1111_symbolic_opset9_repeat_interleave(g, self, repeats, dim=None, output_size=None): | |
# from torch.onnx.symbolic_helper import ScalarType | |
from torch.onnx.symbolic_opset9 import expand, unsqueeze | |
input = self | |
# if dim is None flatten | |
# By default, use the flattened input array, and return a flat output array | |
if sym_help._is_none(dim): | |
input = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1]))) | |
dim = 0 | |
else: | |
dim = sym_help._maybe_get_scalar(dim) | |
repeats_dim = sym_help._get_tensor_rank(repeats) | |
repeats_sizes = sym_help._get_tensor_sizes(repeats) | |
input_sizes = sym_help._get_tensor_sizes(input) | |
if repeats_dim is None: | |
raise RuntimeError( | |
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats rank." | |
) | |
if repeats_sizes is None: | |
raise RuntimeError( | |
"Unsupported: ONNX export of repeat_interleave for unknown " "repeats size." | |
) | |
if input_sizes is None: | |
raise RuntimeError( | |
"Unsupported: ONNX export of repeat_interleave for unknown " "input size." | |
) | |
input_sizes_temp = input_sizes.copy() | |
for idx, input_size in enumerate(input_sizes): | |
if input_size is None: | |
input_sizes[idx], input_sizes_temp[idx] = 0, -1 | |
# Cases where repeats is an int or single value tensor | |
if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1): | |
if not sym_help._is_tensor(repeats): | |
repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) | |
if input_sizes[dim] == 0: | |
return sym_help._onnx_opset_unsupported_detailed( | |
"repeat_interleave", | |
9, | |
13, | |
"Unsupported along dimension with unknown input size", | |
) | |
else: | |
reps = input_sizes[dim] | |
repeats = expand(g, repeats, g.op("Constant", value_t=torch.tensor([reps])), None) | |
# Cases where repeats is a 1 dim Tensor | |
elif repeats_dim == 1: | |
if input_sizes[dim] == 0: | |
return sym_help._onnx_opset_unsupported_detailed( | |
"repeat_interleave", | |
9, | |
13, | |
"Unsupported along dimension with unknown input size", | |
) | |
if repeats_sizes[0] is None: | |
return sym_help._onnx_opset_unsupported_detailed( | |
"repeat_interleave", 9, 13, "Unsupported for cases with dynamic repeats" | |
) | |
assert ( | |
repeats_sizes[0] == input_sizes[dim] | |
), "repeats must have the same size as input along dim" | |
reps = repeats_sizes[0] | |
else: | |
raise RuntimeError("repeats must be 0-dim or 1-dim tensor") | |
final_splits = list() | |
r_splits = sym_help._repeat_interleave_split_helper(g, repeats, reps, 0) | |
if isinstance(r_splits, torch._C.Value): | |
r_splits = [r_splits] | |
i_splits = sym_help._repeat_interleave_split_helper(g, input, reps, dim) | |
if isinstance(i_splits, torch._C.Value): | |
i_splits = [i_splits] | |
input_sizes[dim], input_sizes_temp[dim] = -1, 1 | |
for idx, r_split in enumerate(r_splits): | |
i_split = unsqueeze(g, i_splits[idx], dim + 1) | |
r_concat = [ | |
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[: dim + 1])), | |
r_split, | |
g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[dim + 1 :])), | |
] | |
r_concat = g.op("Concat", *r_concat, axis_i=0) | |
i_split = expand(g, i_split, r_concat, None) | |
i_split = sym_help._reshape_helper( | |
g, | |
i_split, | |
g.op("Constant", value_t=torch.LongTensor(input_sizes)), | |
allowzero=0, | |
) | |
final_splits.append(i_split) | |
return g.op("Concat", *final_splits, axis_i=dim) | |