Spaces:
Runtime error
Runtime error
from io import BytesIO | |
import streamlit as st | |
import pandas as pd | |
import os | |
import numpy as np | |
from streamlit import caching | |
from PIL import Image | |
from model.flax_clip_vision_marian.modeling_clip_vision_marian import ( | |
FlaxCLIPVisionMarianMT, | |
) | |
from transformers import MarianTokenizer | |
from utils import ( | |
get_transformed_image, | |
) | |
import matplotlib.pyplot as plt | |
from mtranslate import translate | |
from session import _get_state | |
state = _get_state() | |
def load_model(ckpt): | |
return FlaxCLIPVisionMarianMT.from_pretrained(ckpt) | |
tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-es") | |
def generate_sequence(pixel_values, num_beams, temperature, top_p): | |
output_ids = state.model.generate(input_ids=pixel_values, max_length=64, num_beams=num_beams, temperature=temperature, top_p = top_p) | |
print(output_ids) | |
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64) | |
return output_sequence | |
def read_markdown(path, parent="./sections/"): | |
with open(os.path.join(parent, path)) as f: | |
return f.read() | |
checkpoints = ["./ckpt/ckpt-23999"] # TODO: Maybe add more checkpoints? | |
dummy_data = pd.read_csv("references.tsv", sep="\t") | |
st.set_page_config( | |
page_title="Spanish Image Captioning", | |
layout="wide", | |
initial_sidebar_state="collapsed", | |
page_icon="./misc/csi-logo.png", | |
) | |
st.title("Spanish Image Captioning") | |
st.write( | |
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)" | |
) | |
st.sidebar.title("Generation Parameters") | |
num_beams = st.sidebar.number_input("Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.") | |
temperature = st.sidebar.select_slider("Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}") | |
top_p = st.sidebar.select_slider("Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}") | |
if st.sidebar.button("Clear All Cache"): | |
caching.clear_cache() | |
image_col, intro_col = st.beta_columns([3, 8]) | |
image_col.image("./misc/sic-logo.png", use_column_width="always") | |
intro_col.write(read_markdown("intro.md")) | |
with st.beta_expander("Usage"): | |
st.markdown(read_markdown("usage.md")) | |
with st.beta_expander("Article"): | |
st.write(read_markdown("abstract.md")) | |
st.write(read_markdown("caveats.md")) | |
st.write("## Methodology") | |
st.image( | |
"./misc/Spanish-IC.png", caption="Seq2Seq model for Image-text Captioning." | |
) | |
st.markdown(read_markdown("pretraining.md")) | |
st.write(read_markdown("challenges.md")) | |
st.write(read_markdown("social_impact.md")) | |
st.write(read_markdown("references.md")) | |
# st.write(read_markdown("checkpoints.md")) | |
st.write(read_markdown("acknowledgements.md")) | |
if state.model is None: | |
with st.spinner("Loading model..."): | |
state.model = load_model(checkpoints[0]) | |
first_index = 20 | |
# Init Session State | |
if state.image_file is None: | |
state.image_file = dummy_data.loc[first_index, "image_file"] | |
state.caption = dummy_data.loc[first_index, "caption"].strip("- ") | |
image_path = os.path.join("images", state.image_file) | |
image = plt.imread(image_path) | |
state.image = image | |
# col1, col2 = st.beta_columns([6, 4]) | |
# col2.write("OR") | |
# uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"]) | |
# if uploaded_file is not None: | |
# state.image_file = os.path.join("images", uploaded_file.name) | |
# state.image = np.array(Image.open(uploaded_file)) | |
transformed_image = get_transformed_image(state.image) | |
new_col1, new_col2 = st.beta_columns([5,5]) | |
if new_col2.button("Get a random example", help="Get a random example from one of the seeded examples."): | |
sample = dummy_data.sample(1).reset_index() | |
state.image_file = sample.loc[0, "image_file"] | |
state.caption = sample.loc[0, "caption"].strip("- ") | |
image_path = os.path.join("images", state.image_file) | |
image = plt.imread(image_path) | |
state.image = image | |
# Display Image | |
new_col1.image(state.image, use_column_width="always") | |
# Display Reference Caption | |
new_col2.write("**Reference Caption**: " + state.caption) | |
new_col2.markdown( | |
f"""**English Translation**: {translate(state.caption, 'en')}""" | |
) | |
sequence = [''] | |
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."): | |
with st.spinner("Generating Sequence..."): | |
sequence = generate_sequence(transformed_image, num_beams, temperature, top_p) | |
# print(sequence) | |
if sequence!=['']: | |
st.write( | |
"**Generated Caption**: "+sequence[0] | |
) | |
st.write( | |
"**English Translation**: "+ translate(sequence[0]) | |
) | |