Spaces:
Runtime error
Runtime error
initial commit
Browse files- README.md +4 -4
- app.py +63 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
1 |
---
|
2 |
+
title: RoBERTa Indonesian
|
3 |
+
emoji: 🇮🇩
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: white
|
6 |
sdk: streamlit
|
7 |
app_file: app.py
|
8 |
pinned: false
|
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import InferenceApi
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
STYLE = """
|
7 |
+
<style>
|
8 |
+
img {
|
9 |
+
max-width: 100%;
|
10 |
+
}
|
11 |
+
|
12 |
+
th {
|
13 |
+
text-align: left!important
|
14 |
+
}
|
15 |
+
</style>
|
16 |
+
"""
|
17 |
+
MASK_TOKEN = "<mask>"
|
18 |
+
|
19 |
+
|
20 |
+
def display_table(df):
|
21 |
+
st.subheader("Top 5 Prediction.")
|
22 |
+
df.drop(columns=["token", "token_str"], inplace=True)
|
23 |
+
df = df.style.set_properties(subset=["sequence", "score"], **{"text-align": "left"})
|
24 |
+
st.table(df)
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
st.markdown(STYLE, unsafe_allow_html=True)
|
29 |
+
st.title("Indonesian RoBERTa Base")
|
30 |
+
user_input = st.text_input("Insert a sentence to predict with a mask token: <mask>")
|
31 |
+
mask_api = InferenceApi("flax-community/indonesian-roberta-base")
|
32 |
+
|
33 |
+
emot_name = "StevenLimcorn/indonesian-roberta-base-emotion-classifier"
|
34 |
+
emot_pipeline = pipeline("sentiment-analysis", model=emot_name, tokenizer=emot_name)
|
35 |
+
|
36 |
+
if len(user_input) > 0:
|
37 |
+
try:
|
38 |
+
user_input.index(MASK_TOKEN)
|
39 |
+
except ValueError:
|
40 |
+
st.error("Please enter a sentence with the correct mask token: <mask>")
|
41 |
+
else:
|
42 |
+
# A List of dict with keys: sequence, score, token, token_str
|
43 |
+
result = mask_api(inputs=user_input)
|
44 |
+
df = pd.DataFrame(result)
|
45 |
+
display_table(df)
|
46 |
+
|
47 |
+
# emot
|
48 |
+
st.subheader("Emotion Analysis of the Top 5 Prediction")
|
49 |
+
emot_df = pd.DataFrame(columns=["sequence", "label", "score"])
|
50 |
+
for sequence in df["sequence"].values:
|
51 |
+
emot_output = emot_pipeline(sequence)
|
52 |
+
|
53 |
+
result_dict = {"sequence": sequence}
|
54 |
+
result_dict.update(emot_output[0])
|
55 |
+
emot_df = emot_df.append(result_dict, ignore_index=True)
|
56 |
+
|
57 |
+
emot_df = emot_df.style.set_properties(
|
58 |
+
subset=["sequence", "label", "score"], **{"text-align": "left"}
|
59 |
+
)
|
60 |
+
st.table(emot_df)
|
61 |
+
|
62 |
+
|
63 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
huggingface_hub
|
3 |
+
torch
|
4 |
+
jax
|
5 |
+
flax
|
6 |
+
transformers
|
7 |
+
pandas
|