Spaces:
Runtime error
Runtime error
gchhablani
commited on
Commit
•
865ae27
1
Parent(s):
66b1416
Update intro
Browse files- sections/intro/intro.md +1 -1
sections/intro/intro.md
CHANGED
@@ -9,6 +9,6 @@ In addition, even recent **approaches that have been proposed for VQA generally
|
|
9 |
|
10 |
A major **advantage that comes from using transformers is their simplicity and their accessibility** - thanks to HuggingFace, ViT and Transformers. For ViT models, for example, all one needs to do is pass the normalized images to the transformer.
|
11 |
|
12 |
-
While building a low-resource non-English VQA approach has several benefits of its own, a multilingual VQA task is interesting because it will help create a generic
|
13 |
|
14 |
We follow the two-staged training approach, our pre-training task being text-only Masked Language Modeling (MLM). Our pre-training dataset comes from Conceptual-12M dataset where we use mBART-50 for translation. Our fine-tuning dataset is taken from the VQAv2 dataset and its translation is done using MarianMT models. Our checkpoints achieve a **validation accuracy of 0.69 on our MLM** task, while our fine-tuned model is able to achieve a **validation accuracy of 0.49 on our multilingual VQAv2 validation set**. With better captions, hyperparameter-tuning, and further training, we expect to see higher performance.
|
|
|
9 |
|
10 |
A major **advantage that comes from using transformers is their simplicity and their accessibility** - thanks to HuggingFace, ViT and Transformers. For ViT models, for example, all one needs to do is pass the normalized images to the transformer.
|
11 |
|
12 |
+
While building a low-resource non-English VQA approach has several benefits of its own, a multilingual VQA task is interesting because it will help create a generic model that works well across several languages. And then, it can be fine-tuned in low-resource settings to leverage pre-training improvements. **With the aim of democratizing such a challenging yet interesting task, in this project, we focus on Mutilingual Visual Question Answering (MVQA)**. Our intention here is to provide a Proof-of-Concept with our simple CLIP-Vision-BERT baseline which leverages a multilingual checkpoint with pre-trained image encoders. Our model currently supports for four languages - **English, French, German and Spanish**.
|
13 |
|
14 |
We follow the two-staged training approach, our pre-training task being text-only Masked Language Modeling (MLM). Our pre-training dataset comes from Conceptual-12M dataset where we use mBART-50 for translation. Our fine-tuning dataset is taken from the VQAv2 dataset and its translation is done using MarianMT models. Our checkpoints achieve a **validation accuracy of 0.69 on our MLM** task, while our fine-tuned model is able to achieve a **validation accuracy of 0.49 on our multilingual VQAv2 validation set**. With better captions, hyperparameter-tuning, and further training, we expect to see higher performance.
|