gchhablani commited on
Commit
865ae27
1 Parent(s): 66b1416

Update intro

Browse files
Files changed (1) hide show
  1. sections/intro/intro.md +1 -1
sections/intro/intro.md CHANGED
@@ -9,6 +9,6 @@ In addition, even recent **approaches that have been proposed for VQA generally
9
 
10
  A major **advantage that comes from using transformers is their simplicity and their accessibility** - thanks to HuggingFace, ViT and Transformers. For ViT models, for example, all one needs to do is pass the normalized images to the transformer.
11
 
12
- While building a low-resource non-English VQA approach has several benefits of its own, a multilingual VQA task is interesting because it will help create a generic approach/model that works decently well across several languages **With the aim of democratizing such a challenging yet interesting task, in this project, we focus on Mutilingual Visual Question Answering (MVQA)**. Our intention here is to provide a Proof-of-Concept with our simple CLIP-Vision-BERT baseline which leverages a multilingual checkpoint with pre-trained image encoders. Our model currently supports for four languages - **English, French, German and Spanish**.
13
 
14
  We follow the two-staged training approach, our pre-training task being text-only Masked Language Modeling (MLM). Our pre-training dataset comes from Conceptual-12M dataset where we use mBART-50 for translation. Our fine-tuning dataset is taken from the VQAv2 dataset and its translation is done using MarianMT models. Our checkpoints achieve a **validation accuracy of 0.69 on our MLM** task, while our fine-tuned model is able to achieve a **validation accuracy of 0.49 on our multilingual VQAv2 validation set**. With better captions, hyperparameter-tuning, and further training, we expect to see higher performance.
 
9
 
10
  A major **advantage that comes from using transformers is their simplicity and their accessibility** - thanks to HuggingFace, ViT and Transformers. For ViT models, for example, all one needs to do is pass the normalized images to the transformer.
11
 
12
+ While building a low-resource non-English VQA approach has several benefits of its own, a multilingual VQA task is interesting because it will help create a generic model that works well across several languages. And then, it can be fine-tuned in low-resource settings to leverage pre-training improvements. **With the aim of democratizing such a challenging yet interesting task, in this project, we focus on Mutilingual Visual Question Answering (MVQA)**. Our intention here is to provide a Proof-of-Concept with our simple CLIP-Vision-BERT baseline which leverages a multilingual checkpoint with pre-trained image encoders. Our model currently supports for four languages - **English, French, German and Spanish**.
13
 
14
  We follow the two-staged training approach, our pre-training task being text-only Masked Language Modeling (MLM). Our pre-training dataset comes from Conceptual-12M dataset where we use mBART-50 for translation. Our fine-tuning dataset is taken from the VQAv2 dataset and its translation is done using MarianMT models. Our checkpoints achieve a **validation accuracy of 0.69 on our MLM** task, while our fine-tuned model is able to achieve a **validation accuracy of 0.49 on our multilingual VQAv2 validation set**. With better captions, hyperparameter-tuning, and further training, we expect to see higher performance.