Spaces:
Running
on
L4
Running
on
L4
from typing import Dict | |
import numpy as np | |
from omegaconf import DictConfig, ListConfig | |
import torch | |
from torch.utils.data import Dataset | |
from pathlib import Path | |
import json | |
from PIL import Image | |
from torchvision import transforms | |
from einops import rearrange | |
from typing import Literal, Tuple, Optional, Any | |
import cv2 | |
import random | |
import json | |
import os, sys | |
import math | |
from glob import glob | |
import PIL.Image | |
from .normal_utils import trans_normal, normal2img, img2normal | |
import pdb | |
from rembg import remove | |
import cv2 | |
import numpy as np | |
def add_margin(pil_img, color=0, size=256): | |
width, height = pil_img.size | |
result = Image.new(pil_img.mode, (size, size), color) | |
result.paste(pil_img, ((size - width) // 2, (size - height) // 2)) | |
return result | |
def scale_and_place_object(image, scale_factor): | |
assert np.shape(image)[-1]==4 # RGBA | |
# Extract the alpha channel (transparency) and the object (RGB channels) | |
alpha_channel = image[:, :, 3] | |
# Find the bounding box coordinates of the object | |
coords = cv2.findNonZero(alpha_channel) | |
x, y, width, height = cv2.boundingRect(coords) | |
# Calculate the scale factor for resizing | |
original_height, original_width = image.shape[:2] | |
if width > height: | |
size = width | |
original_size = original_width | |
else: | |
size = height | |
original_size = original_height | |
scale_factor = min(scale_factor, size / (original_size+0.0)) | |
new_size = scale_factor * original_size | |
scale_factor = new_size / size | |
# Calculate the new size based on the scale factor | |
new_width = int(width * scale_factor) | |
new_height = int(height * scale_factor) | |
center_x = original_width // 2 | |
center_y = original_height // 2 | |
paste_x = center_x - (new_width // 2) | |
paste_y = center_y - (new_height // 2) | |
# Resize the object (RGB channels) to the new size | |
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height)) | |
# Create a new RGBA image with the resized image | |
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8) | |
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object | |
return new_image | |
class SingleImageDataset(Dataset): | |
def __init__(self, | |
root_dir: str, | |
num_views: int, | |
img_wh: Tuple[int, int], | |
bg_color: str, | |
crop_size: int = 224, | |
single_image: Optional[PIL.Image.Image] = None, | |
num_validation_samples: Optional[int] = None, | |
filepaths: Optional[list] = None, | |
cam_types: Optional[list] = None, | |
cond_type: Optional[str] = None, | |
load_cam_type: Optional[bool] = True | |
) -> None: | |
"""Create a dataset from a folder of images. | |
If you pass in a root directory it will be searched for images | |
ending in ext (ext can be a list) | |
""" | |
self.root_dir = root_dir | |
self.num_views = num_views | |
self.img_wh = img_wh | |
self.crop_size = crop_size | |
self.bg_color = bg_color | |
self.cond_type = cond_type | |
self.load_cam_type = load_cam_type | |
self.cam_types = cam_types | |
if self.num_views == 4: | |
self.view_types = ['front', 'right', 'back', 'left'] | |
elif self.num_views == 5: | |
self.view_types = ['front', 'front_right', 'right', 'back', 'left'] | |
elif self.num_views == 6: | |
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] | |
self.fix_cam_pose_dir = "./mv_diffusion_30/data/fixed_poses/nine_views" | |
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix | |
if single_image is None: | |
if filepaths is None: | |
# Get a list of all files in the directory | |
file_list = os.listdir(self.root_dir) | |
self.cam_types = ['ortho'] * len(file_list) + ['persp']* len(file_list) | |
file_list = file_list * 2 | |
else: | |
file_list = filepaths | |
# Filter the files that end with .png or .jpg | |
self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg'))] | |
else: | |
self.file_list = None | |
# load all images | |
self.all_images = [] | |
self.all_alphas = [] | |
bg_color = self.get_bg_color() | |
if single_image is not None: | |
image, alpha = self.load_image(None, bg_color, return_type='pt', Imagefile=single_image) | |
self.all_images.append(image) | |
self.all_alphas.append(alpha) | |
else: | |
for file in self.file_list: | |
print(os.path.join(self.root_dir, file)) | |
image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt') | |
self.all_images.append(image) | |
self.all_alphas.append(alpha) | |
# | |
# assert len(self.file_list) == len(self.cam_types) | |
self.all_images = self.all_images[:num_validation_samples] | |
self.all_alphas = self.all_alphas[:num_validation_samples] | |
def __len__(self): | |
return len(self.all_images) | |
def load_fixed_poses(self): | |
poses = {} | |
for face in self.view_types: | |
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face))) | |
poses[face] = RT | |
return poses | |
def cartesian_to_spherical(self, xyz): | |
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) | |
xy = xyz[:,0]**2 + xyz[:,1]**2 | |
z = np.sqrt(xy + xyz[:,2]**2) | |
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down | |
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up | |
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) | |
return np.array([theta, azimuth, z]) | |
def get_T(self, target_RT, cond_RT): | |
R, T = target_RT[:3, :3], target_RT[:, -1] | |
T_target = -R.T @ T # change to cam2world | |
R, T = cond_RT[:3, :3], cond_RT[:, -1] | |
T_cond = -R.T @ T | |
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) | |
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) | |
d_theta = theta_target - theta_cond | |
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) | |
d_z = z_target - z_cond | |
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) | |
return d_theta, d_azimuth | |
def get_bg_color(self): | |
if self.bg_color == 'white': | |
bg_color = np.array([1., 1., 1.], dtype=np.float32) | |
elif self.bg_color == 'black': | |
bg_color = np.array([0., 0., 0.], dtype=np.float32) | |
elif self.bg_color == 'gray': | |
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) | |
elif self.bg_color == 'random': | |
bg_color = np.random.rand(3) | |
elif isinstance(self.bg_color, float): | |
bg_color = np.array([self.bg_color] * 3, dtype=np.float32) | |
else: | |
raise NotImplementedError | |
return bg_color | |
def load_image(self, img_path, bg_color, return_type='np', Imagefile=None): | |
# pil always returns uint8 | |
if Imagefile is None: | |
image_input = Image.open(img_path) | |
else: | |
image_input = Imagefile | |
image_size = self.img_wh[0] | |
# if np.asarray(image_input).shape[-1] != 4: | |
# print('move background for:', image_input) | |
# image_input = remove(image_input) | |
if self.crop_size!=-1: | |
alpha_np = np.asarray(image_input)[:, :, 3] | |
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] | |
min_x, min_y = np.min(coords, 0) | |
max_x, max_y = np.max(coords, 0) | |
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) | |
h, w = ref_img_.height, ref_img_.width | |
scale = self.crop_size / max(h, w) | |
h_, w_ = int(scale * h), int(scale * w) | |
ref_img_ = ref_img_.resize((w_, h_)) | |
image_input = add_margin(ref_img_, size=image_size) | |
else: | |
image_input = add_margin(image_input, size=max(image_input.height, image_input.width)) | |
image_input = image_input.resize((image_size, image_size)) | |
# img = scale_and_place_object(img, self.scale_ratio) | |
img = np.array(image_input) | |
img = img.astype(np.float32) / 255. # [0, 1] | |
assert img.shape[-1] == 4 # RGBA | |
alpha = img[...,3:4] | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
alpha = torch.from_numpy(alpha) | |
else: | |
raise NotImplementedError | |
return img, alpha | |
def __len__(self): | |
return len(self.all_images) | |
def __getitem__(self, index): | |
image = self.all_images[index%len(self.all_images)] | |
alpha = self.all_alphas[index%len(self.all_images)] | |
if self.load_cam_type: | |
cam_type = self.cam_types[index%len(self.all_images)] | |
else: | |
cam_type = 'ortho' | |
if self.file_list is not None: | |
filename = self.file_list[index%len(self.all_images)].replace(".png", "") | |
else: | |
filename = 'null' | |
cond_w2c = self.fix_cam_poses['front'] | |
tgt_w2cs = [self.fix_cam_poses[view] for view in self.view_types] | |
elevations = [] | |
azimuths = [] | |
img_tensors_in = [ | |
image.permute(2, 0, 1) | |
] * self.num_views | |
alpha_tensors_in = [ | |
alpha.permute(2, 0, 1) | |
] * self.num_views | |
for view, tgt_w2c in zip(self.view_types, tgt_w2cs): | |
# evelations, azimuths | |
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c) | |
elevations.append(elevation) | |
azimuths.append(azimuth) | |
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
elevations = torch.as_tensor(elevations).float().squeeze(1) | |
azimuths = torch.as_tensor(azimuths).float().squeeze(1) | |
elevations_cond = torch.as_tensor([0] * self.num_views).float() | |
normal_class = torch.tensor([1, 0]).float() | |
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2) | |
color_class = torch.tensor([0, 1]).float() | |
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2) | |
depth_class = torch.tensor([1, 1]).float() | |
depth_task_embeddings = torch.stack([depth_class]*self.num_views, dim=0) | |
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3) | |
print("camera type:", cam_type) | |
if cam_type == 'ortho': | |
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1) | |
else: | |
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1) | |
if self.load_cam_type: | |
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5) | |
out = { | |
'elevations_cond': elevations_cond, | |
'elevations_cond_deg': torch.rad2deg(elevations_cond), | |
'elevations': elevations, | |
'azimuths': azimuths, | |
'elevations_deg': torch.rad2deg(elevations), | |
'azimuths_deg': torch.rad2deg(azimuths), | |
'imgs_in': img_tensors_in, | |
'alphas': alpha_tensors_in, | |
'camera_embeddings': camera_embeddings, | |
'normal_task_embeddings': normal_task_embeddings, | |
'color_task_embeddings': color_task_embeddings, | |
'depth_task_embeddings': depth_task_embeddings, | |
'filename': filename, | |
'cam_type': cam_type | |
} | |
return out | |