Spaces:
Running
on
L4
Running
on
L4
update mv
Browse files- mv_diffusion_30/data/depth_utils.py +126 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_back_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_back_left_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_back_right_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_front_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_front_left_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_front_right_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_left_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_right_RT.txt +3 -0
- mv_diffusion_30/data/fixed_poses/nine_views/000_top_RT.txt +3 -0
- mv_diffusion_30/data/multiview_image_dataset.py +308 -0
- mv_diffusion_30/data/normal_utils.py +45 -0
- mv_diffusion_30/data/objaverse_dataset.py +1359 -0
- mv_diffusion_30/data/single_image_dataset.py +334 -0
- mv_diffusion_30/models/transformer_mv2d.py +1093 -0
- mv_diffusion_30/models/unet_mv2d_blocks.py +922 -0
- mv_diffusion_30/models/unet_mv2d_condition.py +1501 -0
- mv_diffusion_30/pipelines/pipeline_mvdiffusion_image.py +555 -0
mv_diffusion_30/data/depth_utils.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def colorize_depth_maps(
|
6 |
+
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
|
7 |
+
):
|
8 |
+
"""
|
9 |
+
Colorize depth maps.
|
10 |
+
"""
|
11 |
+
assert len(depth_map.shape) >= 2, "Invalid dimension"
|
12 |
+
|
13 |
+
if isinstance(depth_map, torch.Tensor):
|
14 |
+
depth = depth_map.detach().squeeze().numpy()
|
15 |
+
elif isinstance(depth_map, np.ndarray):
|
16 |
+
depth = depth_map.copy().squeeze()
|
17 |
+
# reshape to [ (B,) H, W ]
|
18 |
+
if depth.ndim < 3:
|
19 |
+
depth = depth[np.newaxis, :, :]
|
20 |
+
|
21 |
+
# colorize
|
22 |
+
cm = matplotlib.colormaps[cmap]
|
23 |
+
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
|
24 |
+
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
|
25 |
+
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
|
26 |
+
|
27 |
+
if valid_mask is not None:
|
28 |
+
if isinstance(depth_map, torch.Tensor):
|
29 |
+
valid_mask = valid_mask.detach().numpy()
|
30 |
+
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
|
31 |
+
if valid_mask.ndim < 3:
|
32 |
+
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
|
33 |
+
else:
|
34 |
+
valid_mask = valid_mask[:, np.newaxis, :, :]
|
35 |
+
valid_mask = np.repeat(valid_mask, 3, axis=1)
|
36 |
+
img_colored_np[~valid_mask] = 0
|
37 |
+
|
38 |
+
if isinstance(depth_map, torch.Tensor):
|
39 |
+
img_colored = torch.from_numpy(img_colored_np).float()
|
40 |
+
elif isinstance(depth_map, np.ndarray):
|
41 |
+
img_colored = img_colored_np
|
42 |
+
|
43 |
+
return img_colored
|
44 |
+
|
45 |
+
|
46 |
+
def scale_depth_to_model(depth, camera_type='ortho'):
|
47 |
+
"""
|
48 |
+
Scale depth from the original range.
|
49 |
+
"""
|
50 |
+
assert camera_type == 'ortho' or camera_type == 'persp'
|
51 |
+
w, h = depth.shape
|
52 |
+
|
53 |
+
if camera_type == 'ortho':
|
54 |
+
original_min = 9000
|
55 |
+
original_max = 17000
|
56 |
+
target_min = 2000
|
57 |
+
target_max = 62000
|
58 |
+
|
59 |
+
mask = depth != 0
|
60 |
+
# Scale depth to [0, 1]
|
61 |
+
depth_normalized = np.zeros([w, h])
|
62 |
+
depth_normalized[mask] = (depth[mask] - original_min) / (original_max - original_min)
|
63 |
+
|
64 |
+
# Scale depth to [2000, 60000]
|
65 |
+
scaled_depth = np.zeros([w, h])
|
66 |
+
scaled_depth[mask] = depth_normalized[mask] * (target_max - target_min) + target_min
|
67 |
+
|
68 |
+
else:
|
69 |
+
original_min = 4000
|
70 |
+
original_max = 13000
|
71 |
+
target_min = 2000
|
72 |
+
target_max = 62000
|
73 |
+
|
74 |
+
mask = depth != 0
|
75 |
+
# Scale depth to [0, 1]
|
76 |
+
depth_normalized = np.zeros([w, h])
|
77 |
+
depth_normalized[mask] = (depth[mask] - original_min) / (original_max - original_min)
|
78 |
+
|
79 |
+
# Scale depth to [2000, 60000]
|
80 |
+
scaled_depth = np.zeros([w, h])
|
81 |
+
scaled_depth[mask] = depth_normalized[mask] * (target_max - target_min) + target_min
|
82 |
+
|
83 |
+
scaled_depth[scaled_depth > 62000] = 0
|
84 |
+
scaled_depth = scaled_depth / 65535. # [0, 1]
|
85 |
+
|
86 |
+
return scaled_depth
|
87 |
+
|
88 |
+
def rescale_depth_to_world(scaled_depth, camera_type='ortho'):
|
89 |
+
"""
|
90 |
+
Rescale depth from the scaled range back to the original range.
|
91 |
+
"""
|
92 |
+
assert camera_type == 'ortho' or camera_type == 'persp'
|
93 |
+
scaled_depth = scaled_depth * 65535.
|
94 |
+
w, h = scaled_depth.shape
|
95 |
+
|
96 |
+
if camera_type == 'ortho':
|
97 |
+
original_min = 9000
|
98 |
+
original_max = 17000
|
99 |
+
target_min = 2000
|
100 |
+
target_max = 62000
|
101 |
+
|
102 |
+
mask = scaled_depth != 0
|
103 |
+
rescaled_depth_norm = np.zeros([w, h])
|
104 |
+
# Rescale depth to [0, 1]
|
105 |
+
rescaled_depth_norm[mask] = (scaled_depth[mask] - target_min) / (target_max - target_min)
|
106 |
+
|
107 |
+
# Rescale depth to [9000, 17000]
|
108 |
+
rescaled_depth = np.zeros([w, h])
|
109 |
+
rescaled_depth[mask] = rescaled_depth_norm[mask] * (original_max - original_min) + original_min
|
110 |
+
|
111 |
+
else:
|
112 |
+
original_min = 4000
|
113 |
+
original_max = 13000
|
114 |
+
target_min = 2000
|
115 |
+
target_max = 62000
|
116 |
+
|
117 |
+
mask = scaled_depth != 0
|
118 |
+
rescaled_depth_norm = np.zeros([w, h])
|
119 |
+
# Rescale depth to [0, 1]
|
120 |
+
rescaled_depth_norm[mask] = (scaled_depth[mask] - target_min) / (target_max - target_min)
|
121 |
+
|
122 |
+
# Rescale depth to [9000, 17000]
|
123 |
+
rescaled_depth = np.zeros([w, h])
|
124 |
+
rescaled_depth[mask] = rescaled_depth_norm[mask] * (original_max - original_min) + original_min
|
125 |
+
|
126 |
+
return rescaled_depth
|
mv_diffusion_30/data/fixed_poses/nine_views/000_back_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
-5.266582965850830078e-01 7.410295009613037109e-01 -4.165407419204711914e-01 -5.960464477539062500e-08
|
2 |
+
5.865638996738198330e-08 4.900035560131072998e-01 8.717204332351684570e-01 -9.462351613365171943e-08
|
3 |
+
8.500770330429077148e-01 4.590988159179687500e-01 -2.580644786357879639e-01 -1.300000071525573730e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_back_left_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
-9.734988808631896973e-01 1.993551850318908691e-01 -1.120596975088119507e-01 -1.713633537292480469e-07
|
2 |
+
3.790224578636980368e-09 4.900034964084625244e-01 8.717204928398132324e-01 1.772203575001185527e-07
|
3 |
+
2.286916375160217285e-01 8.486189246177673340e-01 -4.770178496837615967e-01 -1.838477611541748047e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_back_right_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
2.286914736032485962e-01 8.486190438270568848e-01 -4.770178198814392090e-01 1.564621925354003906e-07
|
2 |
+
-3.417914484771245043e-08 4.900034070014953613e-01 8.717205524444580078e-01 -7.293811421504869941e-08
|
3 |
+
9.734990000724792480e-01 -1.993550658226013184e-01 1.120596155524253845e-01 -1.838477969169616699e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_front_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
5.266583561897277832e-01 -7.410295009613037109e-01 4.165407419204711914e-01 0.000000000000000000e+00
|
2 |
+
5.865638996738198330e-08 4.900035560131072998e-01 8.717204332351684570e-01 9.462351613365171943e-08
|
3 |
+
-8.500770330429077148e-01 -4.590988159179687500e-01 2.580645382404327393e-01 -1.300000071525573730e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_front_left_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
-2.286916971206665039e-01 -8.486189842224121094e-01 4.770179092884063721e-01 -2.458691596984863281e-07
|
2 |
+
9.085837859856837895e-09 4.900034666061401367e-01 8.717205524444580078e-01 1.205695667749751010e-07
|
3 |
+
-9.734990000724792480e-01 1.993551701307296753e-01 -1.120597645640373230e-01 -1.838477969169616699e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_front_right_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
9.734989404678344727e-01 -1.993551850318908691e-01 1.120596975088119507e-01 -1.415610313415527344e-07
|
2 |
+
3.790224578636980368e-09 4.900034964084625244e-01 8.717204928398132324e-01 -1.772203575001185527e-07
|
3 |
+
-2.286916375160217285e-01 -8.486189246177673340e-01 4.770178794860839844e-01 -1.838477611541748047e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_left_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
-8.500771522521972656e-01 -4.590989053249359131e-01 2.580644488334655762e-01 0.000000000000000000e+00
|
2 |
+
-4.257411134744870651e-08 4.900034964084625244e-01 8.717204928398132324e-01 9.006067358541258727e-08
|
3 |
+
-5.266583561897277832e-01 7.410295605659484863e-01 -4.165408313274383545e-01 -1.300000071525573730e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_right_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
8.500770330429077148e-01 4.590989053249359131e-01 -2.580644488334655762e-01 5.960464477539062500e-08
|
2 |
+
-4.257411134744870651e-08 4.900034964084625244e-01 8.717204928398132324e-01 -9.006067358541258727e-08
|
3 |
+
5.266583561897277832e-01 -7.410295605659484863e-01 4.165407419204711914e-01 -1.300000071525573730e+00
|
mv_diffusion_30/data/fixed_poses/nine_views/000_top_RT.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
9.958608150482177734e-01 7.923202216625213623e-02 -4.453715682029724121e-02 -3.098167056236889039e-09
|
2 |
+
-9.089154005050659180e-02 8.681122064590454102e-01 -4.879753291606903076e-01 5.784738377201392723e-08
|
3 |
+
-2.028124157504862524e-08 4.900035560131072998e-01 8.717204332351684570e-01 -1.300000071525573730e+00
|
mv_diffusion_30/data/multiview_image_dataset.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
from omegaconf import DictConfig, ListConfig
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from pathlib import Path
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange
|
11 |
+
from typing import Literal, Tuple, Optional, Any
|
12 |
+
import cv2
|
13 |
+
import random
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os, sys
|
17 |
+
import math
|
18 |
+
|
19 |
+
from glob import glob
|
20 |
+
|
21 |
+
import PIL.Image
|
22 |
+
from .normal_utils import trans_normal, normal2img, img2normal
|
23 |
+
import pdb
|
24 |
+
|
25 |
+
|
26 |
+
import cv2
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
def add_margin(pil_img, color=0, size=256):
|
30 |
+
width, height = pil_img.size
|
31 |
+
result = Image.new(pil_img.mode, (size, size), color)
|
32 |
+
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
|
33 |
+
return result
|
34 |
+
|
35 |
+
def scale_and_place_object(image, scale_factor):
|
36 |
+
assert np.shape(image)[-1]==4 # RGBA
|
37 |
+
|
38 |
+
# Extract the alpha channel (transparency) and the object (RGB channels)
|
39 |
+
alpha_channel = image[:, :, 3]
|
40 |
+
|
41 |
+
# Find the bounding box coordinates of the object
|
42 |
+
coords = cv2.findNonZero(alpha_channel)
|
43 |
+
x, y, width, height = cv2.boundingRect(coords)
|
44 |
+
|
45 |
+
# Calculate the scale factor for resizing
|
46 |
+
original_height, original_width = image.shape[:2]
|
47 |
+
|
48 |
+
if width > height:
|
49 |
+
size = width
|
50 |
+
original_size = original_width
|
51 |
+
else:
|
52 |
+
size = height
|
53 |
+
original_size = original_height
|
54 |
+
|
55 |
+
scale_factor = min(scale_factor, size / (original_size+0.0))
|
56 |
+
|
57 |
+
new_size = scale_factor * original_size
|
58 |
+
scale_factor = new_size / size
|
59 |
+
|
60 |
+
# Calculate the new size based on the scale factor
|
61 |
+
new_width = int(width * scale_factor)
|
62 |
+
new_height = int(height * scale_factor)
|
63 |
+
|
64 |
+
center_x = original_width // 2
|
65 |
+
center_y = original_height // 2
|
66 |
+
|
67 |
+
paste_x = center_x - (new_width // 2)
|
68 |
+
paste_y = center_y - (new_height // 2)
|
69 |
+
|
70 |
+
# Resize the object (RGB channels) to the new size
|
71 |
+
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))
|
72 |
+
|
73 |
+
# Create a new RGBA image with the resized image
|
74 |
+
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)
|
75 |
+
|
76 |
+
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object
|
77 |
+
|
78 |
+
return new_image
|
79 |
+
|
80 |
+
class InferenceImageDataset(Dataset):
|
81 |
+
def __init__(self,
|
82 |
+
root_dir: str,
|
83 |
+
num_views: int,
|
84 |
+
img_wh: Tuple[int, int],
|
85 |
+
bg_color: str,
|
86 |
+
crop_size: int = 224,
|
87 |
+
single_image: Optional[PIL.Image.Image] = None,
|
88 |
+
num_validation_samples: Optional[int] = None,
|
89 |
+
filepaths: Optional[list] = None,
|
90 |
+
cam_types: Optional[list] = None,
|
91 |
+
cond_type: Optional[str] = None,
|
92 |
+
load_cam_type: Optional[bool] = True
|
93 |
+
) -> None:
|
94 |
+
"""Create a dataset from a folder of images.
|
95 |
+
If you pass in a root directory it will be searched for images
|
96 |
+
ending in ext (ext can be a list)
|
97 |
+
"""
|
98 |
+
self.root_dir = root_dir
|
99 |
+
self.num_views = num_views
|
100 |
+
self.img_wh = img_wh
|
101 |
+
self.crop_size = crop_size
|
102 |
+
self.bg_color = bg_color
|
103 |
+
self.cond_type = cond_type
|
104 |
+
self.load_cam_type = load_cam_type
|
105 |
+
self.cam_types = cam_types
|
106 |
+
|
107 |
+
if self.num_views == 4:
|
108 |
+
self.view_types = ['front', 'right', 'back', 'left']
|
109 |
+
elif self.num_views == 5:
|
110 |
+
self.view_types = ['front', 'front_right', 'right', 'back', 'left']
|
111 |
+
elif self.num_views == 6:
|
112 |
+
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
113 |
+
|
114 |
+
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
|
115 |
+
|
116 |
+
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
if filepaths is None:
|
121 |
+
# Get a list of all files in the directory
|
122 |
+
file_list = os.listdir(self.root_dir)
|
123 |
+
self.cam_types = ['ortho'] * len(file_list) + ['persp']* len(file_list)
|
124 |
+
file_list = file_list * 2
|
125 |
+
else:
|
126 |
+
file_list = filepaths
|
127 |
+
print(filepaths, root_dir)
|
128 |
+
# Filter the files that end with .png or .jpg
|
129 |
+
self.file_list = [file for file in file_list]
|
130 |
+
|
131 |
+
self.bg_color = self.get_bg_color()
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
def __len__(self):
|
137 |
+
return len(self.file_list)
|
138 |
+
|
139 |
+
def load_fixed_poses(self):
|
140 |
+
poses = {}
|
141 |
+
for face in self.view_types:
|
142 |
+
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
|
143 |
+
poses[face] = RT
|
144 |
+
|
145 |
+
return poses
|
146 |
+
|
147 |
+
def cartesian_to_spherical(self, xyz):
|
148 |
+
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
149 |
+
xy = xyz[:,0]**2 + xyz[:,1]**2
|
150 |
+
z = np.sqrt(xy + xyz[:,2]**2)
|
151 |
+
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
152 |
+
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
153 |
+
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
154 |
+
return np.array([theta, azimuth, z])
|
155 |
+
|
156 |
+
def get_T(self, target_RT, cond_RT):
|
157 |
+
R, T = target_RT[:3, :3], target_RT[:, -1]
|
158 |
+
T_target = -R.T @ T # change to cam2world
|
159 |
+
|
160 |
+
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
161 |
+
T_cond = -R.T @ T
|
162 |
+
|
163 |
+
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
164 |
+
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
165 |
+
|
166 |
+
d_theta = theta_target - theta_cond
|
167 |
+
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
168 |
+
d_z = z_target - z_cond
|
169 |
+
|
170 |
+
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
171 |
+
return d_theta, d_azimuth
|
172 |
+
|
173 |
+
def get_bg_color(self):
|
174 |
+
if self.bg_color == 'white':
|
175 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
176 |
+
elif self.bg_color == 'black':
|
177 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
178 |
+
elif self.bg_color == 'gray':
|
179 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
180 |
+
elif self.bg_color == 'random':
|
181 |
+
bg_color = np.random.rand(3)
|
182 |
+
elif isinstance(self.bg_color, float):
|
183 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
184 |
+
else:
|
185 |
+
raise NotImplementedError
|
186 |
+
return bg_color
|
187 |
+
|
188 |
+
|
189 |
+
def load_image(self, img_path, bg_color, return_type='pt', Imagefile=None):
|
190 |
+
# pil always returns uint8
|
191 |
+
if Imagefile is None:
|
192 |
+
image_input = Image.open(img_path)
|
193 |
+
else:
|
194 |
+
image_input = Imagefile
|
195 |
+
image_size = self.img_wh[0]
|
196 |
+
|
197 |
+
# if self.crop_size!=-1:
|
198 |
+
# alpha_np = np.asarray(image_input)[:, :, 3]
|
199 |
+
# coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
|
200 |
+
# min_x, min_y = np.min(coords, 0)
|
201 |
+
# max_x, max_y = np.max(coords, 0)
|
202 |
+
# ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
|
203 |
+
# h, w = ref_img_.height, ref_img_.width
|
204 |
+
# scale = self.crop_size / max(h, w)
|
205 |
+
# h_, w_ = int(scale * h), int(scale * w)
|
206 |
+
# ref_img_ = ref_img_.resize((w_, h_))
|
207 |
+
# image_input = add_margin(ref_img_, size=image_size)
|
208 |
+
# else:
|
209 |
+
# image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
|
210 |
+
# image_input = image_input.resize((image_size, image_size))
|
211 |
+
|
212 |
+
# img = scale_and_place_object(img, self.scale_ratio)
|
213 |
+
img = np.array(image_input)
|
214 |
+
img = img.astype(np.float32) / 255. # [0, 1]
|
215 |
+
assert img.shape[-1] == 4 # RGBA
|
216 |
+
|
217 |
+
alpha = img[...,3:4]
|
218 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
219 |
+
|
220 |
+
if return_type == "np":
|
221 |
+
pass
|
222 |
+
elif return_type == "pt":
|
223 |
+
img = torch.from_numpy(img)
|
224 |
+
alpha = torch.from_numpy(alpha)
|
225 |
+
else:
|
226 |
+
raise NotImplementedError
|
227 |
+
|
228 |
+
return img, alpha
|
229 |
+
|
230 |
+
|
231 |
+
def __len__(self):
|
232 |
+
return len(self.file_list)
|
233 |
+
|
234 |
+
def __getitem__(self, index):
|
235 |
+
|
236 |
+
# image = self.all_images[index%len(self.all_images)]
|
237 |
+
# alpha = self.all_alphas[index%len(self.all_images)]
|
238 |
+
cam_type = self.cam_types[index%len(self.file_list)]
|
239 |
+
if self.file_list is not None:
|
240 |
+
filename = self.file_list[index%len(self.file_list)].replace(".png", "")
|
241 |
+
else:
|
242 |
+
filename = 'null'
|
243 |
+
|
244 |
+
cond_w2c = self.fix_cam_poses['front']
|
245 |
+
|
246 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in self.view_types]
|
247 |
+
|
248 |
+
elevations = []
|
249 |
+
azimuths = []
|
250 |
+
|
251 |
+
img_tensors_in = []
|
252 |
+
for view in self.view_types:
|
253 |
+
img_path = os.path.join(self.root_dir, filename, cam_type,"color_000_%s.png" % (view))
|
254 |
+
img_tensor, alpha = self.load_image(img_path, self.bg_color, return_type="pt")
|
255 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
256 |
+
img_tensors_in.append(img_tensor)
|
257 |
+
|
258 |
+
alpha_tensors_in = [
|
259 |
+
alpha.permute(2, 0, 1)
|
260 |
+
] * self.num_views
|
261 |
+
|
262 |
+
for view, tgt_w2c in zip(self.view_types, tgt_w2cs):
|
263 |
+
# evelations, azimuths
|
264 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
265 |
+
elevations.append(elevation)
|
266 |
+
azimuths.append(azimuth)
|
267 |
+
|
268 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
269 |
+
# alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
270 |
+
|
271 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
272 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
273 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float()
|
274 |
+
|
275 |
+
normal_class = torch.tensor([1, 0]).float()
|
276 |
+
normal_task_embeddings = torch.stack([normal_class] * self.num_views, dim=0) # (Nv, 2)
|
277 |
+
color_class = torch.tensor([0, 1]).float()
|
278 |
+
depth_task_embeddings = torch.stack([color_class] * self.num_views, dim=0) # (Nv, 2)
|
279 |
+
|
280 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
281 |
+
|
282 |
+
if cam_type == 'ortho':
|
283 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
284 |
+
else:
|
285 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
286 |
+
|
287 |
+
if self.load_cam_type:
|
288 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
289 |
+
|
290 |
+
out = {
|
291 |
+
'elevations_cond': elevations_cond,
|
292 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
293 |
+
'elevations': elevations,
|
294 |
+
'azimuths': azimuths,
|
295 |
+
'elevations_deg': torch.rad2deg(elevations),
|
296 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
297 |
+
'imgs_in': img_tensors_in,
|
298 |
+
'alphas': alpha_tensors_in,
|
299 |
+
'camera_embeddings': camera_embeddings,
|
300 |
+
'normal_task_embeddings': normal_task_embeddings,
|
301 |
+
'depth_task_embeddings': depth_task_embeddings,
|
302 |
+
'filename': filename,
|
303 |
+
'cam_type': cam_type
|
304 |
+
}
|
305 |
+
|
306 |
+
return out
|
307 |
+
|
308 |
+
|
mv_diffusion_30/data/normal_utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def camNormal2worldNormal(rot_c2w, camNormal):
|
4 |
+
H,W,_ = camNormal.shape
|
5 |
+
normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
|
6 |
+
|
7 |
+
return normal_img
|
8 |
+
|
9 |
+
def worldNormal2camNormal(rot_w2c, normal_map_world):
|
10 |
+
H,W,_ = normal_map_world.shape
|
11 |
+
# normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
|
12 |
+
|
13 |
+
# faster version
|
14 |
+
# Reshape the normal map into a 2D array where each row represents a normal vector
|
15 |
+
normal_map_flat = normal_map_world.reshape(-1, 3)
|
16 |
+
|
17 |
+
# Transform the normal vectors using the transformation matrix
|
18 |
+
normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T)
|
19 |
+
|
20 |
+
# Reshape the transformed normal map back to its original shape
|
21 |
+
normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape)
|
22 |
+
|
23 |
+
return normal_map_camera
|
24 |
+
|
25 |
+
def trans_normal(normal, RT_w2c, RT_w2c_target):
|
26 |
+
|
27 |
+
# normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
|
28 |
+
# normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)
|
29 |
+
|
30 |
+
relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3]))
|
31 |
+
normal_target_cam = worldNormal2camNormal(relative_RT[:3,:3], normal)
|
32 |
+
|
33 |
+
return normal_target_cam
|
34 |
+
|
35 |
+
def img2normal(img):
|
36 |
+
return (img/255.)*2-1
|
37 |
+
|
38 |
+
def normal2img(normal):
|
39 |
+
return np.uint8((normal*0.5+0.5)*255)
|
40 |
+
|
41 |
+
def norm_normalize(normal, dim=-1):
|
42 |
+
|
43 |
+
normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)
|
44 |
+
|
45 |
+
return normal
|
mv_diffusion_30/data/objaverse_dataset.py
ADDED
@@ -0,0 +1,1359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
from omegaconf import DictConfig, ListConfig
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from pathlib import Path
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange
|
11 |
+
from typing import Literal, Tuple, Optional, Any
|
12 |
+
import cv2
|
13 |
+
import random
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os, sys
|
17 |
+
import math
|
18 |
+
|
19 |
+
import PIL.Image
|
20 |
+
from .normal_utils import trans_normal, normal2img, img2normal
|
21 |
+
import pdb
|
22 |
+
from .depth_utils import scale_depth_to_model
|
23 |
+
import traceback
|
24 |
+
|
25 |
+
|
26 |
+
class ObjaverseDataset(Dataset):
|
27 |
+
def __init__(self,
|
28 |
+
root_dir_ortho: str,
|
29 |
+
root_dir_persp: str,
|
30 |
+
pred_ortho: bool,
|
31 |
+
pred_persp: bool,
|
32 |
+
num_views: int,
|
33 |
+
bg_color: Any,
|
34 |
+
img_wh: Tuple[int, int],
|
35 |
+
object_list: str,
|
36 |
+
groups_num: int=1,
|
37 |
+
validation: bool = False,
|
38 |
+
data_view_num: int = 6,
|
39 |
+
num_validation_samples: int = 64,
|
40 |
+
num_samples: Optional[int] = None,
|
41 |
+
invalid_list: Optional[str] = None,
|
42 |
+
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view
|
43 |
+
augment_data: bool = False,
|
44 |
+
read_normal: bool = True,
|
45 |
+
read_color: bool = False,
|
46 |
+
read_depth: bool = False,
|
47 |
+
read_mask: bool = False,
|
48 |
+
pred_type: str = 'color',
|
49 |
+
suffix: str = 'png',
|
50 |
+
subscene_tag: int = 2,
|
51 |
+
load_cam_type: bool = False,
|
52 |
+
backup_scene: str = "0306b42594fb447ca574f597352d4b56",
|
53 |
+
ortho_crop_size: int = 360,
|
54 |
+
persp_crop_size: int = 440,
|
55 |
+
load_switcher: bool = True
|
56 |
+
) -> None:
|
57 |
+
"""Create a dataset from a folder of images.
|
58 |
+
If you pass in a root directory it will be searched for images
|
59 |
+
ending in ext (ext can be a list)
|
60 |
+
"""
|
61 |
+
self.load_cam_type = load_cam_type
|
62 |
+
self.root_dir_ortho = Path(root_dir_ortho)
|
63 |
+
self.root_dir_persp = Path(root_dir_persp)
|
64 |
+
self.pred_ortho = pred_ortho
|
65 |
+
self.pred_persp = pred_persp
|
66 |
+
self.num_views = num_views
|
67 |
+
self.bg_color = bg_color
|
68 |
+
self.validation = validation
|
69 |
+
self.num_samples = num_samples
|
70 |
+
self.trans_norm_system = trans_norm_system
|
71 |
+
self.augment_data = augment_data
|
72 |
+
self.invalid_list = invalid_list
|
73 |
+
self.groups_num = groups_num
|
74 |
+
print("augment data: ", self.augment_data)
|
75 |
+
self.img_wh = img_wh
|
76 |
+
self.read_normal = read_normal
|
77 |
+
self.read_color = read_color
|
78 |
+
self.read_depth = read_depth
|
79 |
+
self.read_mask = read_mask
|
80 |
+
self.pred_type = pred_type # load type
|
81 |
+
self.suffix = suffix
|
82 |
+
self.subscene_tag = subscene_tag
|
83 |
+
|
84 |
+
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
85 |
+
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
|
86 |
+
|
87 |
+
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
88 |
+
self.ortho_crop_size = ortho_crop_size
|
89 |
+
self.persp_crop_size = persp_crop_size
|
90 |
+
self.load_switcher = load_switcher
|
91 |
+
|
92 |
+
if object_list is not None:
|
93 |
+
with open(object_list) as f:
|
94 |
+
self.objects = json.load(f)
|
95 |
+
self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects]
|
96 |
+
else:
|
97 |
+
self.objects = os.listdir(self.root_dir)
|
98 |
+
self.objects = sorted(self.objects)
|
99 |
+
|
100 |
+
if self.invalid_list is not None:
|
101 |
+
with open(self.invalid_list) as f:
|
102 |
+
self.invalid_objects = json.load(f)
|
103 |
+
self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects]
|
104 |
+
else:
|
105 |
+
self.invalid_objects = []
|
106 |
+
|
107 |
+
|
108 |
+
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
|
109 |
+
self.all_objects = list(self.all_objects)
|
110 |
+
|
111 |
+
if not validation:
|
112 |
+
self.all_objects = self.all_objects[:-num_validation_samples]
|
113 |
+
else:
|
114 |
+
self.all_objects = self.all_objects[-num_validation_samples:]
|
115 |
+
if num_samples is not None:
|
116 |
+
self.all_objects = self.all_objects[:num_samples]
|
117 |
+
|
118 |
+
print("loading ", len(self.all_objects), " objects in the dataset")
|
119 |
+
|
120 |
+
if self.pred_type == 'color':
|
121 |
+
self.backup_data = self.__getitem_color__(0, backup_scene)
|
122 |
+
elif self.pred_type == 'normal_depth':
|
123 |
+
self.backup_data = self.__getitem_normal_depth__(0, backup_scene)
|
124 |
+
elif self.pred_type == 'mixed_rgb_normal_depth':
|
125 |
+
self.backup_data = self.__getitem_mixed__(0, backup_scene)
|
126 |
+
elif self.pred_type == 'mixed_color_normal':
|
127 |
+
self.backup_data = self.__getitem_image_normal_mixed__(0, backup_scene)
|
128 |
+
elif self.pred_type == 'mixed_rgb_noraml_mask':
|
129 |
+
self.backup_data = self.__getitem_mixed_rgb_noraml_mask__(0, backup_scene)
|
130 |
+
elif self.pred_type == 'joint_color_normal':
|
131 |
+
self.backup_data = self.__getitem_joint_rgb_noraml__(0, backup_scene)
|
132 |
+
|
133 |
+
|
134 |
+
def __len__(self):
|
135 |
+
return len(self.objects)*self.total_view
|
136 |
+
|
137 |
+
def load_fixed_poses(self):
|
138 |
+
poses = {}
|
139 |
+
for face in self.view_types:
|
140 |
+
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
|
141 |
+
poses[face] = RT
|
142 |
+
|
143 |
+
return poses
|
144 |
+
|
145 |
+
def cartesian_to_spherical(self, xyz):
|
146 |
+
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
147 |
+
xy = xyz[:,0]**2 + xyz[:,1]**2
|
148 |
+
z = np.sqrt(xy + xyz[:,2]**2)
|
149 |
+
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
150 |
+
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
151 |
+
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
152 |
+
return np.array([theta, azimuth, z])
|
153 |
+
|
154 |
+
def get_T(self, target_RT, cond_RT):
|
155 |
+
R, T = target_RT[:3, :3], target_RT[:, -1]
|
156 |
+
T_target = -R.T @ T # change to cam2world
|
157 |
+
|
158 |
+
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
159 |
+
T_cond = -R.T @ T
|
160 |
+
|
161 |
+
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
162 |
+
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
163 |
+
|
164 |
+
d_theta = theta_target - theta_cond
|
165 |
+
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
166 |
+
d_z = z_target - z_cond
|
167 |
+
|
168 |
+
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
169 |
+
return d_theta, d_azimuth
|
170 |
+
|
171 |
+
def get_bg_color(self):
|
172 |
+
if self.bg_color == 'white':
|
173 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
174 |
+
elif self.bg_color == 'black':
|
175 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
176 |
+
elif self.bg_color == 'gray':
|
177 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
178 |
+
elif self.bg_color == 'random':
|
179 |
+
bg_color = np.random.rand(3)
|
180 |
+
elif self.bg_color == 'three_choices':
|
181 |
+
white = np.array([1., 1., 1.], dtype=np.float32)
|
182 |
+
black = np.array([0., 0., 0.], dtype=np.float32)
|
183 |
+
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
184 |
+
bg_color = random.choice([white, black, gray])
|
185 |
+
elif isinstance(self.bg_color, float):
|
186 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
187 |
+
else:
|
188 |
+
raise NotImplementedError
|
189 |
+
return bg_color
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
def load_mask(self, img_path, return_type='np'):
|
194 |
+
# not using cv2 as may load in uint16 format
|
195 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
196 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
197 |
+
# pil always returns uint8
|
198 |
+
img = np.array(Image.open(img_path).resize(self.img_wh))
|
199 |
+
img = np.float32(img > 0)
|
200 |
+
|
201 |
+
assert len(np.shape(img)) == 2
|
202 |
+
|
203 |
+
if return_type == "np":
|
204 |
+
pass
|
205 |
+
elif return_type == "pt":
|
206 |
+
img = torch.from_numpy(img)
|
207 |
+
else:
|
208 |
+
raise NotImplementedError
|
209 |
+
|
210 |
+
return img
|
211 |
+
|
212 |
+
def load_mask_from_rgba(self, img_path, camera_type):
|
213 |
+
img = Image.open(img_path)
|
214 |
+
|
215 |
+
if camera_type == 'ortho':
|
216 |
+
left = (img.width - self.ortho_crop_size) // 2
|
217 |
+
right = (img.width + self.ortho_crop_size) // 2
|
218 |
+
top = (img.height - self.ortho_crop_size) // 2
|
219 |
+
bottom = (img.height + self.ortho_crop_size) // 2
|
220 |
+
img = img.crop((left, top, right, bottom))
|
221 |
+
if camera_type == 'persp':
|
222 |
+
left = (img.width - self.persp_crop_size) // 2
|
223 |
+
right = (img.width + self.persp_crop_size) // 2
|
224 |
+
top = (img.height - self.persp_crop_size) // 2
|
225 |
+
bottom = (img.height + self.persp_crop_size) // 2
|
226 |
+
img = img.crop((left, top, right, bottom))
|
227 |
+
|
228 |
+
img = img.resize(self.img_wh)
|
229 |
+
img = np.array(img).astype(np.float32) / 255. # [0, 1]
|
230 |
+
assert img.shape[-1] == 4 # must RGBA
|
231 |
+
|
232 |
+
alpha = img[:, :, 3:]
|
233 |
+
|
234 |
+
if alpha.shape[-1] != 1:
|
235 |
+
alpha = alpha[:, :, None]
|
236 |
+
|
237 |
+
return alpha
|
238 |
+
|
239 |
+
def load_image(self, img_path, bg_color, alpha, return_type='np', camera_type=None, read_depth=False, center_crop_size=None):
|
240 |
+
# not using cv2 as may load in uint16 format
|
241 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
242 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
243 |
+
# pil always returns uint8
|
244 |
+
img = Image.open(img_path)
|
245 |
+
if center_crop_size == None:
|
246 |
+
if camera_type == 'ortho':
|
247 |
+
left = (img.width - self.ortho_crop_size) // 2
|
248 |
+
right = (img.width + self.ortho_crop_size) // 2
|
249 |
+
top = (img.height - self.ortho_crop_size) // 2
|
250 |
+
bottom = (img.height + self.ortho_crop_size) // 2
|
251 |
+
img = img.crop((left, top, right, bottom))
|
252 |
+
if camera_type == 'persp':
|
253 |
+
left = (img.width - self.persp_crop_size) // 2
|
254 |
+
right = (img.width + self.persp_crop_size) // 2
|
255 |
+
top = (img.height - self.persp_crop_size) // 2
|
256 |
+
bottom = (img.height + self.persp_crop_size) // 2
|
257 |
+
img = img.crop((left, top, right, bottom))
|
258 |
+
else:
|
259 |
+
center_crop_size = min(center_crop_size, 512)
|
260 |
+
left = (img.width - center_crop_size) // 2
|
261 |
+
right = (img.width + center_crop_size) // 2
|
262 |
+
top = (img.height - center_crop_size) // 2
|
263 |
+
bottom = (img.height + center_crop_size) // 2
|
264 |
+
img = img.crop((left, top, right, bottom))
|
265 |
+
|
266 |
+
img = img.resize(self.img_wh)
|
267 |
+
img = np.array(img).astype(np.float32) / 255. # [0, 1]
|
268 |
+
assert img.shape[-1] == 3 or img.shape[-1] == 4 # RGB or RGBA
|
269 |
+
|
270 |
+
if alpha is None and img.shape[-1] == 4:
|
271 |
+
alpha = img[:, :, 3:]
|
272 |
+
img = img[:, :, :3]
|
273 |
+
|
274 |
+
if alpha.shape[-1] != 1:
|
275 |
+
alpha = alpha[:, :, None]
|
276 |
+
|
277 |
+
if read_depth:
|
278 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
279 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
280 |
+
|
281 |
+
if return_type == "np":
|
282 |
+
pass
|
283 |
+
elif return_type == "pt":
|
284 |
+
img = torch.from_numpy(img)
|
285 |
+
else:
|
286 |
+
raise NotImplementedError
|
287 |
+
|
288 |
+
return img
|
289 |
+
|
290 |
+
def load_depth(self, img_path, bg_color, alpha, return_type='np', camera_type=None):
|
291 |
+
# not using cv2 as may load in uint16 format
|
292 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
293 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
294 |
+
# pil always returns uint8
|
295 |
+
depth_bg_color = np.array([1., 1., 1.], dtype=np.float32) # white for depth
|
296 |
+
depth_map = Image.open(img_path)
|
297 |
+
|
298 |
+
if camera_type == 'ortho':
|
299 |
+
left = (depth_map.width - self.ortho_crop_size) // 2
|
300 |
+
right = (depth_map.width + self.ortho_crop_size) // 2
|
301 |
+
top = (depth_map.height - self.ortho_crop_size) // 2
|
302 |
+
bottom = (depth_map.height + self.ortho_crop_size) // 2
|
303 |
+
depth_map = depth_map.crop((left, top, right, bottom))
|
304 |
+
if camera_type == 'persp':
|
305 |
+
left = (depth_map.width - self.persp_crop_size) // 2
|
306 |
+
right = (depth_map.width + self.persp_crop_size) // 2
|
307 |
+
top = (depth_map.height - self.persp_crop_size) // 2
|
308 |
+
bottom = (depth_map.height + self.persp_crop_size) // 2
|
309 |
+
depth_map = depth_map.crop((left, top, right, bottom))
|
310 |
+
|
311 |
+
depth_map = depth_map.resize(self.img_wh)
|
312 |
+
depth_map = np.array(depth_map)
|
313 |
+
|
314 |
+
# scale the depth map:
|
315 |
+
depth_map = scale_depth_to_model(depth_map.astype(np.float32))
|
316 |
+
# depth_map = depth_map / 65535. # [0, 1]
|
317 |
+
# depth_map[depth_map > 0.4] = 0
|
318 |
+
# depth_map = depth_map / 0.4
|
319 |
+
|
320 |
+
assert depth_map.ndim == 2 # depth
|
321 |
+
img = np.stack([depth_map]*3, axis=-1)
|
322 |
+
|
323 |
+
if alpha.shape[-1] != 1:
|
324 |
+
alpha = alpha[:, :, None]
|
325 |
+
|
326 |
+
|
327 |
+
# print(np.max(img[:, :, 0]))
|
328 |
+
# print(np.min(img[...,:3]), np.max(img[...,:3]))
|
329 |
+
img = img[...,:3] * alpha + depth_bg_color * (1 - alpha)
|
330 |
+
|
331 |
+
if return_type == "np":
|
332 |
+
pass
|
333 |
+
elif return_type == "pt":
|
334 |
+
img = torch.from_numpy(img)
|
335 |
+
else:
|
336 |
+
raise NotImplementedError
|
337 |
+
|
338 |
+
return img
|
339 |
+
|
340 |
+
def transform_mask_as_input(self, mask, return_type='np'):
|
341 |
+
|
342 |
+
# mask = mask * 255
|
343 |
+
# print(np.max(mask))
|
344 |
+
|
345 |
+
# mask = mask.resize(self.img_wh)
|
346 |
+
mask = np.squeeze(mask, axis=-1)
|
347 |
+
assert mask.ndim == 2 #
|
348 |
+
mask = np.stack([mask]*3, axis=-1)
|
349 |
+
if return_type == "np":
|
350 |
+
pass
|
351 |
+
elif return_type == "pt":
|
352 |
+
mask = torch.from_numpy(mask)
|
353 |
+
else:
|
354 |
+
raise NotImplementedError
|
355 |
+
return mask
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np', camera_type=None, center_crop_size=None):
|
360 |
+
# not using cv2 as may load in uint16 format
|
361 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
362 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
363 |
+
# pil always returns uint8
|
364 |
+
# normal = Image.open(img_path)
|
365 |
+
|
366 |
+
img = Image.open(img_path)
|
367 |
+
if center_crop_size == None:
|
368 |
+
if camera_type == 'ortho':
|
369 |
+
left = (img.width - self.ortho_crop_size) // 2
|
370 |
+
right = (img.width + self.ortho_crop_size) // 2
|
371 |
+
top = (img.height - self.ortho_crop_size) // 2
|
372 |
+
bottom = (img.height + self.ortho_crop_size) // 2
|
373 |
+
img = img.crop((left, top, right, bottom))
|
374 |
+
if camera_type == 'persp':
|
375 |
+
left = (img.width - self.persp_crop_size) // 2
|
376 |
+
right = (img.width + self.persp_crop_size) // 2
|
377 |
+
top = (img.height - self.persp_crop_size) // 2
|
378 |
+
bottom = (img.height + self.persp_crop_size) // 2
|
379 |
+
img = img.crop((left, top, right, bottom))
|
380 |
+
else:
|
381 |
+
center_crop_size = min(center_crop_size, 512)
|
382 |
+
left = (img.width - center_crop_size) // 2
|
383 |
+
right = (img.width + center_crop_size) // 2
|
384 |
+
top = (img.height - center_crop_size) // 2
|
385 |
+
bottom = (img.height + center_crop_size) // 2
|
386 |
+
img = img.crop((left, top, right, bottom))
|
387 |
+
|
388 |
+
normal = np.array(img.resize(self.img_wh))
|
389 |
+
|
390 |
+
assert normal.shape[-1] == 3 or normal.shape[-1] == 4 # RGB or RGBA
|
391 |
+
|
392 |
+
if alpha is None and normal.shape[-1] == 4:
|
393 |
+
alpha = normal[:, :, 3:] / 255.
|
394 |
+
normal = normal[:, :, :3]
|
395 |
+
|
396 |
+
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond)
|
397 |
+
|
398 |
+
img = (normal*0.5 + 0.5).astype(np.float32) # [0, 1]
|
399 |
+
|
400 |
+
if alpha.shape[-1] != 1:
|
401 |
+
alpha = alpha[:, :, None]
|
402 |
+
|
403 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
404 |
+
|
405 |
+
if return_type == "np":
|
406 |
+
pass
|
407 |
+
elif return_type == "pt":
|
408 |
+
img = torch.from_numpy(img)
|
409 |
+
else:
|
410 |
+
raise NotImplementedError
|
411 |
+
|
412 |
+
return img
|
413 |
+
|
414 |
+
def __len__(self):
|
415 |
+
return len(self.all_objects)
|
416 |
+
|
417 |
+
def __getitem_color__(self, index, debug_object=None):
|
418 |
+
if debug_object is not None:
|
419 |
+
object_name = debug_object #
|
420 |
+
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
421 |
+
else:
|
422 |
+
object_name = self.all_objects[index % len(self.all_objects)]
|
423 |
+
set_idx = 0
|
424 |
+
|
425 |
+
if self.augment_data:
|
426 |
+
cond_view = random.sample(self.view_types, k=1)[0]
|
427 |
+
else:
|
428 |
+
cond_view = 'front'
|
429 |
+
|
430 |
+
assert self.pred_ortho or self.pred_persp
|
431 |
+
if self.pred_ortho and self.pred_persp:
|
432 |
+
if random.random() < 0.5:
|
433 |
+
load_dir = self.root_dir_ortho
|
434 |
+
load_cam_type = 'ortho'
|
435 |
+
else:
|
436 |
+
load_dir = self.root_dir_persp
|
437 |
+
load_cam_type = 'persp'
|
438 |
+
elif self.pred_ortho and not self.pred_persp:
|
439 |
+
load_dir = self.root_dir_ortho
|
440 |
+
load_cam_type = 'ortho'
|
441 |
+
elif self.pred_persp and not self.pred_ortho:
|
442 |
+
load_dir = self.root_dir_persp
|
443 |
+
load_cam_type = 'persp'
|
444 |
+
|
445 |
+
# ! if you would like predict depth; modify here
|
446 |
+
|
447 |
+
read_color, read_normal, read_depth = True, False, False
|
448 |
+
|
449 |
+
|
450 |
+
assert (read_color and (read_normal or read_depth)) is False
|
451 |
+
|
452 |
+
view_types = self.view_types
|
453 |
+
|
454 |
+
cond_w2c = self.fix_cam_poses[cond_view]
|
455 |
+
|
456 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
457 |
+
|
458 |
+
elevations = []
|
459 |
+
azimuths = []
|
460 |
+
|
461 |
+
# get the bg color
|
462 |
+
bg_color = self.get_bg_color()
|
463 |
+
|
464 |
+
if self.read_mask:
|
465 |
+
cond_alpha = self.load_mask(os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
466 |
+
"mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)),
|
467 |
+
return_type='np')
|
468 |
+
else:
|
469 |
+
cond_alpha = None
|
470 |
+
img_tensors_in = [
|
471 |
+
self.load_image(os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
472 |
+
"rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)),
|
473 |
+
bg_color, cond_alpha, return_type='pt', camera_type=load_cam_type).permute(2, 0, 1)
|
474 |
+
] * self.num_views
|
475 |
+
img_tensors_out = []
|
476 |
+
|
477 |
+
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
478 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
479 |
+
"rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
480 |
+
mask_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
481 |
+
"mask_%03d_%s.%s" % (set_idx, view, self.suffix))
|
482 |
+
normal_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
483 |
+
"normals_%03d_%s.%s" % (set_idx, view, self.suffix))
|
484 |
+
depth_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
485 |
+
"depth_%03d_%s.%s" % (set_idx, view, self.suffix))
|
486 |
+
if self.read_mask:
|
487 |
+
alpha = self.load_mask(mask_path, return_type='np')
|
488 |
+
else:
|
489 |
+
alpha = None
|
490 |
+
|
491 |
+
if read_color:
|
492 |
+
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type)
|
493 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
494 |
+
img_tensors_out.append(img_tensor)
|
495 |
+
|
496 |
+
if read_normal:
|
497 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c,
|
498 |
+
return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
499 |
+
img_tensors_out.append(normal_tensor)
|
500 |
+
if read_depth:
|
501 |
+
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
502 |
+
img_tensors_out.append(depth_tensor)
|
503 |
+
|
504 |
+
# evelations, azimuths
|
505 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
506 |
+
elevations.append(elevation)
|
507 |
+
azimuths.append(azimuth)
|
508 |
+
|
509 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
510 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
511 |
+
|
512 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
513 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
514 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
515 |
+
|
516 |
+
if load_cam_type == 'ortho':
|
517 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
518 |
+
else:
|
519 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
520 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1)
|
521 |
+
# if self.pred_ortho and self.pred_persp:
|
522 |
+
if self.load_cam_type:
|
523 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
524 |
+
|
525 |
+
normal_class = torch.tensor([1, 0]).float()
|
526 |
+
normal_task_embeddings = torch.stack([normal_class] * self.num_views, dim=0) # (Nv, 2)
|
527 |
+
color_class = torch.tensor([0, 1]).float()
|
528 |
+
color_task_embeddings = torch.stack([color_class] * self.num_views, dim=0) # (Nv, 2)
|
529 |
+
if read_normal or read_depth:
|
530 |
+
task_embeddings = normal_task_embeddings
|
531 |
+
if read_color:
|
532 |
+
task_embeddings = color_task_embeddings
|
533 |
+
# print(elevations)
|
534 |
+
# print(azimuths)
|
535 |
+
return {
|
536 |
+
'elevations_cond': elevations_cond,
|
537 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
538 |
+
'elevations': elevations,
|
539 |
+
'azimuths': azimuths,
|
540 |
+
'elevations_deg': torch.rad2deg(elevations),
|
541 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
542 |
+
'imgs_in': img_tensors_in,
|
543 |
+
'imgs_out': img_tensors_out,
|
544 |
+
'camera_embeddings': camera_embeddings,
|
545 |
+
'task_embeddings': task_embeddings
|
546 |
+
}
|
547 |
+
|
548 |
+
def __getitem_normal_depth__(self, index, debug_object=None):
|
549 |
+
if debug_object is not None:
|
550 |
+
object_name = debug_object #
|
551 |
+
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
552 |
+
else:
|
553 |
+
object_name = self.all_objects[index%len(self.all_objects)]
|
554 |
+
set_idx = 0
|
555 |
+
|
556 |
+
if self.augment_data:
|
557 |
+
cond_view = random.sample(self.view_types, k=1)[0]
|
558 |
+
else:
|
559 |
+
cond_view = 'front'
|
560 |
+
|
561 |
+
assert self.pred_ortho or self.pred_persp
|
562 |
+
if self.pred_ortho and self.pred_persp:
|
563 |
+
if random.random() < 0.5:
|
564 |
+
load_dir = self.root_dir_ortho
|
565 |
+
load_cam_type = 'ortho'
|
566 |
+
else:
|
567 |
+
load_dir = self.root_dir_persp
|
568 |
+
load_cam_type = 'persp'
|
569 |
+
elif self.pred_ortho and not self.pred_persp:
|
570 |
+
load_dir = self.root_dir_ortho
|
571 |
+
load_cam_type = 'ortho'
|
572 |
+
elif self.pred_persp and not self.pred_ortho:
|
573 |
+
load_dir = self.root_dir_persp
|
574 |
+
load_cam_type = 'persp'
|
575 |
+
|
576 |
+
view_types = self.view_types
|
577 |
+
|
578 |
+
cond_w2c = self.fix_cam_poses[cond_view]
|
579 |
+
|
580 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
581 |
+
|
582 |
+
elevations = []
|
583 |
+
azimuths = []
|
584 |
+
|
585 |
+
# get the bg color
|
586 |
+
bg_color = self.get_bg_color()
|
587 |
+
|
588 |
+
if self.read_mask:
|
589 |
+
cond_alpha = self.load_mask(os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np')
|
590 |
+
else:
|
591 |
+
cond_alpha = None
|
592 |
+
# img_tensors_in = [
|
593 |
+
# self.load_image(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
594 |
+
# ] * self.num_views
|
595 |
+
img_tensors_out = []
|
596 |
+
normal_tensors_out = []
|
597 |
+
depth_tensors_out = []
|
598 |
+
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
599 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
600 |
+
mask_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix))
|
601 |
+
depth_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "depth_%03d_%s.%s" % (set_idx, view, self.suffix))
|
602 |
+
|
603 |
+
if self.read_mask:
|
604 |
+
alpha = self.load_mask(mask_path, return_type='np')
|
605 |
+
else:
|
606 |
+
alpha = None
|
607 |
+
|
608 |
+
if self.read_color:
|
609 |
+
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type)
|
610 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
611 |
+
img_tensors_out.append(img_tensor)
|
612 |
+
|
613 |
+
if self.read_normal:
|
614 |
+
normal_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix))
|
615 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
616 |
+
normal_tensors_out.append(normal_tensor)
|
617 |
+
|
618 |
+
if self.read_depth:
|
619 |
+
if alpha is None:
|
620 |
+
alpha = self.load_mask_from_rgba(img_path, camera_type=load_cam_type)
|
621 |
+
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
622 |
+
depth_tensors_out.append(depth_tensor)
|
623 |
+
|
624 |
+
|
625 |
+
# evelations, azimuths
|
626 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
627 |
+
elevations.append(elevation)
|
628 |
+
azimuths.append(azimuth)
|
629 |
+
|
630 |
+
img_tensors_in = img_tensors_out
|
631 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
632 |
+
if self.read_color:
|
633 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
634 |
+
if self.read_normal:
|
635 |
+
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
636 |
+
if self.read_depth:
|
637 |
+
depth_tensors_out = torch.stack(depth_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
638 |
+
|
639 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
640 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
641 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
642 |
+
|
643 |
+
if load_cam_type == 'ortho':
|
644 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
645 |
+
else:
|
646 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
647 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1)
|
648 |
+
# if self.pred_ortho and self.pred_persp:
|
649 |
+
if self.load_cam_type:
|
650 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
651 |
+
|
652 |
+
normal_class = torch.tensor([1, 0]).float()
|
653 |
+
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
654 |
+
color_class = torch.tensor([0, 1]).float()
|
655 |
+
depth_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
656 |
+
|
657 |
+
return {
|
658 |
+
'elevations_cond': elevations_cond,
|
659 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
660 |
+
'elevations': elevations,
|
661 |
+
'azimuths': azimuths,
|
662 |
+
'elevations_deg': torch.rad2deg(elevations),
|
663 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
664 |
+
'imgs_in': img_tensors_in,
|
665 |
+
'imgs_out': img_tensors_out,
|
666 |
+
'normals_out': normal_tensors_out,
|
667 |
+
'depth_out': depth_tensors_out,
|
668 |
+
'camera_embeddings': camera_embeddings,
|
669 |
+
'normal_task_embeddings': normal_task_embeddings,
|
670 |
+
'depth_task_embeddings': depth_task_embeddings
|
671 |
+
}
|
672 |
+
|
673 |
+
def __getitem_mixed_rgb_noraml_mask__(self, index, debug_object=None):
|
674 |
+
if debug_object is not None:
|
675 |
+
object_name = debug_object #
|
676 |
+
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
677 |
+
else:
|
678 |
+
object_name = self.all_objects[index%len(self.all_objects)]
|
679 |
+
set_idx = 0
|
680 |
+
|
681 |
+
if self.augment_data:
|
682 |
+
cond_view = random.sample(self.view_types, k=1)[0]
|
683 |
+
else:
|
684 |
+
cond_view = 'front'
|
685 |
+
|
686 |
+
assert self.pred_ortho or self.pred_persp
|
687 |
+
if self.pred_ortho and self.pred_persp:
|
688 |
+
if random.random() < 0.5:
|
689 |
+
load_dir = self.root_dir_ortho
|
690 |
+
load_cam_type = 'ortho'
|
691 |
+
else:
|
692 |
+
load_dir = self.root_dir_persp
|
693 |
+
load_cam_type = 'persp'
|
694 |
+
elif self.pred_ortho and not self.pred_persp:
|
695 |
+
load_dir = self.root_dir_ortho
|
696 |
+
load_cam_type = 'ortho'
|
697 |
+
elif self.pred_persp and not self.pred_ortho:
|
698 |
+
load_dir = self.root_dir_persp
|
699 |
+
load_cam_type = 'persp'
|
700 |
+
|
701 |
+
view_types = self.view_types
|
702 |
+
|
703 |
+
cond_w2c = self.fix_cam_poses[cond_view]
|
704 |
+
|
705 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
706 |
+
|
707 |
+
elevations = []
|
708 |
+
azimuths = []
|
709 |
+
|
710 |
+
# get the bg color
|
711 |
+
bg_color = self.get_bg_color()
|
712 |
+
|
713 |
+
if self.read_mask:
|
714 |
+
cond_alpha = self.load_mask(os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np')
|
715 |
+
else:
|
716 |
+
cond_alpha = None
|
717 |
+
|
718 |
+
img_tensors_out = []
|
719 |
+
normal_tensors_out = []
|
720 |
+
depth_tensors_out = []
|
721 |
+
|
722 |
+
random_select = random.random()
|
723 |
+
read_color, read_normal, read_mask = [random_select < 1 / 3, 1 / 3 <= random_select <= 2 / 3,
|
724 |
+
random_select > 2 / 3]
|
725 |
+
# print(read_color, read_normal, read_depth)
|
726 |
+
|
727 |
+
assert sum([read_color, read_normal, read_mask]) == 1, "Only one variable should be True"
|
728 |
+
|
729 |
+
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
730 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
731 |
+
mask_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix))
|
732 |
+
depth_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "depth_%03d_%s.%s" % (set_idx, view, self.suffix))
|
733 |
+
|
734 |
+
if self.read_mask:
|
735 |
+
alpha = self.load_mask(mask_path, return_type='np')
|
736 |
+
else:
|
737 |
+
alpha = None
|
738 |
+
|
739 |
+
if read_color:
|
740 |
+
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type, read_depth=False)
|
741 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
742 |
+
img_tensors_out.append(img_tensor)
|
743 |
+
|
744 |
+
if read_normal:
|
745 |
+
normal_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix))
|
746 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
747 |
+
img_tensors_out.append(normal_tensor)
|
748 |
+
|
749 |
+
if read_mask:
|
750 |
+
if alpha is None:
|
751 |
+
alpha = self.load_mask_from_rgba(img_path, camera_type=load_cam_type)
|
752 |
+
mask_tensor = self.transform_mask_as_input(alpha, return_type='pt').permute(2, 0, 1)
|
753 |
+
img_tensors_out.append(mask_tensor)
|
754 |
+
|
755 |
+
# evelations, azimuths
|
756 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
757 |
+
elevations.append(elevation)
|
758 |
+
azimuths.append(azimuth)
|
759 |
+
|
760 |
+
if self.load_switcher: # rgb input, use domain switcher to control the output type
|
761 |
+
img_tensors_in = [
|
762 |
+
self.load_image(os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
763 |
+
"normals_%03d_%s.%s" % (set_idx, cond_view, self.suffix)),
|
764 |
+
bg_color, cond_alpha, RT_w2c=cond_w2c, RT_w2c_cond=cond_w2c, return_type='pt', camera_type=load_cam_type).permute(
|
765 |
+
2, 0, 1)
|
766 |
+
] * self.num_views
|
767 |
+
color_class = torch.tensor([0, 1]).float()
|
768 |
+
color_task_embeddings = torch.stack([color_class] * self.num_views, dim=0) # (Nv, 2)
|
769 |
+
|
770 |
+
normal_class = torch.tensor([1, 0]).float()
|
771 |
+
normal_task_embeddings = torch.stack([normal_class] * self.num_views, dim=0) # (Nv, 2)
|
772 |
+
|
773 |
+
mask_class = torch.tensor([1, 1]).float()
|
774 |
+
mask_task_embeddings = torch.stack([mask_class] * self.num_views, dim=0)
|
775 |
+
|
776 |
+
if read_color:
|
777 |
+
task_embeddings = color_task_embeddings
|
778 |
+
# img_tensors_out = depth_tensors_out
|
779 |
+
elif read_normal:
|
780 |
+
task_embeddings = normal_task_embeddings
|
781 |
+
# img_tensors_out = normal_tensors_out
|
782 |
+
elif read_mask:
|
783 |
+
task_embeddings = mask_task_embeddings
|
784 |
+
# img_tensors_out = depth_tensors_out
|
785 |
+
|
786 |
+
else: # for stage 1 training, the input and the output are in the same domain
|
787 |
+
img_tensors_in = [img_tensors_out[0]] * self.num_views
|
788 |
+
|
789 |
+
empty_class = torch.tensor([0, 0]).float() # empty task
|
790 |
+
empty_task_embeddings = torch.stack([empty_class] * self.num_views, dim=0)
|
791 |
+
task_embeddings = empty_task_embeddings
|
792 |
+
|
793 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
794 |
+
|
795 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
796 |
+
|
797 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
798 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
799 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
800 |
+
|
801 |
+
if load_cam_type == 'ortho':
|
802 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
803 |
+
else:
|
804 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
805 |
+
|
806 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1)
|
807 |
+
|
808 |
+
if self.load_cam_type:
|
809 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
810 |
+
|
811 |
+
return {
|
812 |
+
'elevations_cond': elevations_cond,
|
813 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
814 |
+
'elevations': elevations,
|
815 |
+
'azimuths': azimuths,
|
816 |
+
'elevations_deg': torch.rad2deg(elevations),
|
817 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
818 |
+
'imgs_in': img_tensors_in,
|
819 |
+
'imgs_out': img_tensors_out,
|
820 |
+
'normals_out': normal_tensors_out,
|
821 |
+
'depth_out': depth_tensors_out,
|
822 |
+
'camera_embeddings': camera_embeddings,
|
823 |
+
'task_embeddings': task_embeddings,
|
824 |
+
}
|
825 |
+
|
826 |
+
def __getitem_mixed__(self, index, debug_object=None):
|
827 |
+
if debug_object is not None:
|
828 |
+
object_name = debug_object #
|
829 |
+
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
830 |
+
else:
|
831 |
+
object_name = self.all_objects[index%len(self.all_objects)]
|
832 |
+
set_idx = 0
|
833 |
+
|
834 |
+
if self.augment_data:
|
835 |
+
cond_view = random.sample(self.view_types, k=1)[0]
|
836 |
+
else:
|
837 |
+
cond_view = 'front'
|
838 |
+
|
839 |
+
assert self.pred_ortho or self.pred_persp
|
840 |
+
if self.pred_ortho and self.pred_persp:
|
841 |
+
if random.random() < 0.5:
|
842 |
+
load_dir = self.root_dir_ortho
|
843 |
+
load_cam_type = 'ortho'
|
844 |
+
else:
|
845 |
+
load_dir = self.root_dir_persp
|
846 |
+
load_cam_type = 'persp'
|
847 |
+
elif self.pred_ortho and not self.pred_persp:
|
848 |
+
load_dir = self.root_dir_ortho
|
849 |
+
load_cam_type = 'ortho'
|
850 |
+
elif self.pred_persp and not self.pred_ortho:
|
851 |
+
load_dir = self.root_dir_persp
|
852 |
+
load_cam_type = 'persp'
|
853 |
+
|
854 |
+
view_types = self.view_types
|
855 |
+
|
856 |
+
cond_w2c = self.fix_cam_poses[cond_view]
|
857 |
+
|
858 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
859 |
+
|
860 |
+
elevations = []
|
861 |
+
azimuths = []
|
862 |
+
|
863 |
+
# get the bg color
|
864 |
+
bg_color = self.get_bg_color()
|
865 |
+
|
866 |
+
if self.read_mask:
|
867 |
+
cond_alpha = self.load_mask(os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np')
|
868 |
+
else:
|
869 |
+
cond_alpha = None
|
870 |
+
# img_tensors_in = [
|
871 |
+
# self.load_image(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
872 |
+
# ] * self.num_views
|
873 |
+
img_tensors_out = []
|
874 |
+
normal_tensors_out = []
|
875 |
+
depth_tensors_out = []
|
876 |
+
|
877 |
+
random_select = random.random()
|
878 |
+
read_color, read_normal, read_depth = [random_select < 1 / 3, 1 / 3 <= random_select <= 2 / 3,
|
879 |
+
random_select > 2 / 3]
|
880 |
+
# print(read_color, read_normal, read_depth)
|
881 |
+
|
882 |
+
assert sum([read_color, read_normal, read_depth]) == 1, "Only one variable should be True"
|
883 |
+
|
884 |
+
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
885 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
886 |
+
mask_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix))
|
887 |
+
depth_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "depth_%03d_%s.%s" % (set_idx, view, self.suffix))
|
888 |
+
|
889 |
+
if self.read_mask:
|
890 |
+
alpha = self.load_mask(mask_path, return_type='np')
|
891 |
+
else:
|
892 |
+
alpha = None
|
893 |
+
|
894 |
+
if read_color:
|
895 |
+
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type, read_depth=read_depth)
|
896 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
897 |
+
img_tensors_out.append(img_tensor)
|
898 |
+
|
899 |
+
if read_normal:
|
900 |
+
normal_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix))
|
901 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
902 |
+
img_tensors_out.append(normal_tensor)
|
903 |
+
|
904 |
+
if read_depth:
|
905 |
+
if alpha is None:
|
906 |
+
alpha = self.load_mask_from_rgba(img_path, camera_type=load_cam_type)
|
907 |
+
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
908 |
+
img_tensors_out.append(depth_tensor)
|
909 |
+
|
910 |
+
|
911 |
+
# evelations, azimuths
|
912 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
913 |
+
elevations.append(elevation)
|
914 |
+
azimuths.append(azimuth)
|
915 |
+
|
916 |
+
img_tensors_in = [
|
917 |
+
self.load_image(os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
918 |
+
"rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)),
|
919 |
+
bg_color, cond_alpha, return_type='pt', camera_type=load_cam_type, read_depth=read_depth).permute(
|
920 |
+
2, 0, 1)
|
921 |
+
] * self.num_views
|
922 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
923 |
+
# if self.read_color:
|
924 |
+
# img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
925 |
+
# if self.read_normal:
|
926 |
+
# normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
927 |
+
# if self.read_depth:
|
928 |
+
# depth_tensors_out = torch.stack(depth_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
929 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
930 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
931 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
932 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
933 |
+
|
934 |
+
if load_cam_type == 'ortho':
|
935 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
936 |
+
else:
|
937 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
938 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1)
|
939 |
+
# if self.pred_ortho and self.pred_persp:
|
940 |
+
if self.load_cam_type:
|
941 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
942 |
+
|
943 |
+
color_class = torch.tensor([0, 1]).float()
|
944 |
+
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
945 |
+
|
946 |
+
normal_class = torch.tensor([1, 0]).float()
|
947 |
+
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
948 |
+
|
949 |
+
depth_class = torch.tensor([1, 1]).float()
|
950 |
+
depth_task_embeddings = torch.stack([depth_class]*self.num_views, dim=0)
|
951 |
+
|
952 |
+
if read_color:
|
953 |
+
task_embeddings = color_task_embeddings
|
954 |
+
# img_tensors_out = depth_tensors_out
|
955 |
+
elif read_normal:
|
956 |
+
task_embeddings = normal_task_embeddings
|
957 |
+
# img_tensors_out = normal_tensors_out
|
958 |
+
elif read_depth:
|
959 |
+
task_embeddings = depth_task_embeddings
|
960 |
+
# img_tensors_out = depth_tensors_out
|
961 |
+
|
962 |
+
return {
|
963 |
+
'elevations_cond': elevations_cond,
|
964 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
965 |
+
'elevations': elevations,
|
966 |
+
'azimuths': azimuths,
|
967 |
+
'elevations_deg': torch.rad2deg(elevations),
|
968 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
969 |
+
'imgs_in': img_tensors_in,
|
970 |
+
'imgs_out': img_tensors_out,
|
971 |
+
'normals_out': normal_tensors_out,
|
972 |
+
'depth_out': depth_tensors_out,
|
973 |
+
'camera_embeddings': camera_embeddings,
|
974 |
+
'task_embeddings': task_embeddings,
|
975 |
+
}
|
976 |
+
|
977 |
+
def __getitem_image_normal_mixed__(self, index, debug_object=None):
|
978 |
+
if debug_object is not None:
|
979 |
+
object_name = debug_object #
|
980 |
+
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
981 |
+
else:
|
982 |
+
object_name = self.all_objects[index%len(self.all_objects)]
|
983 |
+
set_idx = 0
|
984 |
+
|
985 |
+
if self.augment_data:
|
986 |
+
cond_view = random.sample(self.view_types, k=1)[0]
|
987 |
+
else:
|
988 |
+
cond_view = 'front'
|
989 |
+
|
990 |
+
assert self.pred_ortho or self.pred_persp
|
991 |
+
if self.pred_ortho and self.pred_persp:
|
992 |
+
if random.random() < 0.5:
|
993 |
+
load_dir = self.root_dir_ortho
|
994 |
+
load_cam_type = 'ortho'
|
995 |
+
else:
|
996 |
+
load_dir = self.root_dir_persp
|
997 |
+
load_cam_type = 'persp'
|
998 |
+
elif self.pred_ortho and not self.pred_persp:
|
999 |
+
load_dir = self.root_dir_ortho
|
1000 |
+
load_cam_type = 'ortho'
|
1001 |
+
elif self.pred_persp and not self.pred_ortho:
|
1002 |
+
load_dir = self.root_dir_persp
|
1003 |
+
load_cam_type = 'persp'
|
1004 |
+
|
1005 |
+
view_types = self.view_types
|
1006 |
+
|
1007 |
+
cond_w2c = self.fix_cam_poses[cond_view]
|
1008 |
+
|
1009 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
1010 |
+
|
1011 |
+
elevations = []
|
1012 |
+
azimuths = []
|
1013 |
+
|
1014 |
+
# get the bg color
|
1015 |
+
bg_color = self.get_bg_color()
|
1016 |
+
|
1017 |
+
# get crop size for each mv instance:
|
1018 |
+
center_crop_size = 0
|
1019 |
+
for view in view_types:
|
1020 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1021 |
+
|
1022 |
+
img = Image.open(img_path)
|
1023 |
+
img = img.resize([512,512])
|
1024 |
+
img = np.array(img).astype(np.float32) / 255. # [0, 1]
|
1025 |
+
|
1026 |
+
max_w_h = self.cal_single_view_crop(img)
|
1027 |
+
center_crop_size = max(center_crop_size, max_w_h)
|
1028 |
+
|
1029 |
+
center_crop_size = center_crop_size * 4. / 3.
|
1030 |
+
center_crop_size = center_crop_size + (random.random()-0.5) * 10.
|
1031 |
+
|
1032 |
+
if self.read_mask:
|
1033 |
+
cond_alpha = self.load_mask(os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np')
|
1034 |
+
else:
|
1035 |
+
cond_alpha = None
|
1036 |
+
# img_tensors_in = [
|
1037 |
+
# self.load_image(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
1038 |
+
# ] * self.num_views
|
1039 |
+
img_tensors_out = []
|
1040 |
+
normal_tensors_out = []
|
1041 |
+
depth_tensors_out = []
|
1042 |
+
|
1043 |
+
random_select = random.random()
|
1044 |
+
read_color, read_normal = [random_select < 1 / 2, 1 / 2 <= random_select <= 1]
|
1045 |
+
# print(read_color, read_normal, read_depth)
|
1046 |
+
|
1047 |
+
assert sum([read_color, read_normal]) == 1, "Only one variable should be True"
|
1048 |
+
|
1049 |
+
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
1050 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1051 |
+
mask_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1052 |
+
depth_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "depth_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1053 |
+
|
1054 |
+
if self.read_mask:
|
1055 |
+
alpha = self.load_mask(mask_path, return_type='np')
|
1056 |
+
else:
|
1057 |
+
alpha = None
|
1058 |
+
|
1059 |
+
if read_color:
|
1060 |
+
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type, read_depth=False, center_crop_size=center_crop_size)
|
1061 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
1062 |
+
img_tensors_out.append(img_tensor)
|
1063 |
+
|
1064 |
+
if read_normal:
|
1065 |
+
normal_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1066 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt", camera_type=load_cam_type, center_crop_size=center_crop_size).permute(2, 0, 1)
|
1067 |
+
img_tensors_out.append(normal_tensor)
|
1068 |
+
|
1069 |
+
# if read_depth:
|
1070 |
+
# if alpha is None:
|
1071 |
+
# alpha = self.load_mask_from_rgba(img_path, camera_type=load_cam_type)
|
1072 |
+
# depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type).permute(2, 0, 1)
|
1073 |
+
# img_tensors_out.append(depth_tensor)
|
1074 |
+
|
1075 |
+
|
1076 |
+
# evelations, azimuths
|
1077 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
1078 |
+
elevations.append(elevation)
|
1079 |
+
azimuths.append(azimuth)
|
1080 |
+
|
1081 |
+
img_tensors_in = [
|
1082 |
+
self.load_image(os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
1083 |
+
"rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)),
|
1084 |
+
bg_color, cond_alpha, return_type='pt', camera_type=load_cam_type, read_depth=False, center_crop_size=center_crop_size).permute(
|
1085 |
+
2, 0, 1)
|
1086 |
+
] * self.num_views
|
1087 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
1088 |
+
# if self.read_color:
|
1089 |
+
# img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
1090 |
+
# if self.read_normal:
|
1091 |
+
# normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
1092 |
+
# if self.read_depth:
|
1093 |
+
# depth_tensors_out = torch.stack(depth_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
1094 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
1095 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
1096 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
1097 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
1098 |
+
|
1099 |
+
if load_cam_type == 'ortho':
|
1100 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
1101 |
+
else:
|
1102 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
1103 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1)
|
1104 |
+
# if self.pred_ortho and self.pred_persp:
|
1105 |
+
if self.load_cam_type:
|
1106 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
1107 |
+
|
1108 |
+
color_class = torch.tensor([0, 1]).float()
|
1109 |
+
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
1110 |
+
|
1111 |
+
normal_class = torch.tensor([1, 0]).float()
|
1112 |
+
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
1113 |
+
|
1114 |
+
# depth_class = torch.tensor([1, 1]).float()
|
1115 |
+
# depth_task_embeddings = torch.stack([depth_class]*self.num_views, dim=0)
|
1116 |
+
|
1117 |
+
if read_color:
|
1118 |
+
task_embeddings = color_task_embeddings
|
1119 |
+
# img_tensors_out = depth_tensors_out
|
1120 |
+
elif read_normal:
|
1121 |
+
task_embeddings = normal_task_embeddings
|
1122 |
+
# img_tensors_out = normal_tensors_out
|
1123 |
+
# elif read_depth:
|
1124 |
+
# task_embeddings = depth_task_embeddings
|
1125 |
+
# img_tensors_out = depth_tensors_out
|
1126 |
+
|
1127 |
+
return {
|
1128 |
+
'elevations_cond': elevations_cond,
|
1129 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
1130 |
+
'elevations': elevations,
|
1131 |
+
'azimuths': azimuths,
|
1132 |
+
'elevations_deg': torch.rad2deg(elevations),
|
1133 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
1134 |
+
'imgs_in': img_tensors_in,
|
1135 |
+
'imgs_out': img_tensors_out,
|
1136 |
+
'normals_out': normal_tensors_out,
|
1137 |
+
'depth_out': depth_tensors_out,
|
1138 |
+
'camera_embeddings': camera_embeddings,
|
1139 |
+
'task_embeddings': task_embeddings,
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
def cal_single_view_crop(self, image):
|
1143 |
+
assert np.shape(image)[-1] == 4 # RGBA
|
1144 |
+
|
1145 |
+
# Extract the alpha channel (transparency) and the object (RGB channels)
|
1146 |
+
alpha_channel = image[:, :, 3]
|
1147 |
+
|
1148 |
+
# Find the bounding box coordinates of the object
|
1149 |
+
coords = cv2.findNonZero(alpha_channel)
|
1150 |
+
x, y, width, height = cv2.boundingRect(coords)
|
1151 |
+
|
1152 |
+
return max(width, height)
|
1153 |
+
|
1154 |
+
def __getitem_joint_rgb_noraml__(self, index, debug_object=None):
|
1155 |
+
if debug_object is not None:
|
1156 |
+
object_name = debug_object #
|
1157 |
+
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
1158 |
+
else:
|
1159 |
+
object_name = self.all_objects[index%len(self.all_objects)]
|
1160 |
+
set_idx = 0
|
1161 |
+
|
1162 |
+
if self.augment_data:
|
1163 |
+
cond_view = random.sample(self.view_types, k=1)[0]
|
1164 |
+
else:
|
1165 |
+
cond_view = 'front'
|
1166 |
+
|
1167 |
+
assert self.pred_ortho or self.pred_persp
|
1168 |
+
if self.pred_ortho and self.pred_persp:
|
1169 |
+
if random.random() < 0.5:
|
1170 |
+
load_dir = self.root_dir_ortho
|
1171 |
+
load_cam_type = 'ortho'
|
1172 |
+
else:
|
1173 |
+
load_dir = self.root_dir_persp
|
1174 |
+
load_cam_type = 'persp'
|
1175 |
+
elif self.pred_ortho and not self.pred_persp:
|
1176 |
+
load_dir = self.root_dir_ortho
|
1177 |
+
load_cam_type = 'ortho'
|
1178 |
+
elif self.pred_persp and not self.pred_ortho:
|
1179 |
+
load_dir = self.root_dir_persp
|
1180 |
+
load_cam_type = 'persp'
|
1181 |
+
|
1182 |
+
view_types = self.view_types
|
1183 |
+
|
1184 |
+
cond_w2c = self.fix_cam_poses[cond_view]
|
1185 |
+
|
1186 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
1187 |
+
|
1188 |
+
elevations = []
|
1189 |
+
azimuths = []
|
1190 |
+
|
1191 |
+
# get the bg color
|
1192 |
+
bg_color = self.get_bg_color()
|
1193 |
+
|
1194 |
+
if self.read_mask:
|
1195 |
+
cond_alpha = self.load_mask(os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np')
|
1196 |
+
else:
|
1197 |
+
cond_alpha = None
|
1198 |
+
|
1199 |
+
img_tensors_out = []
|
1200 |
+
normal_tensors_out = []
|
1201 |
+
|
1202 |
+
|
1203 |
+
read_color, read_normal = True, True
|
1204 |
+
# print(read_color, read_normal, read_depth)
|
1205 |
+
|
1206 |
+
# get crop size for each mv instance:
|
1207 |
+
center_crop_size = 0
|
1208 |
+
for view in view_types:
|
1209 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1210 |
+
|
1211 |
+
img = Image.open(img_path)
|
1212 |
+
img = img.resize([512,512])
|
1213 |
+
img = np.array(img).astype(np.float32) / 255. # [0, 1]
|
1214 |
+
|
1215 |
+
max_w_h = self.cal_single_view_crop(img)
|
1216 |
+
center_crop_size = max(center_crop_size, max_w_h)
|
1217 |
+
|
1218 |
+
center_crop_size = center_crop_size * 4. / 3.
|
1219 |
+
center_crop_size = center_crop_size + (random.random()-0.5) * 10.
|
1220 |
+
|
1221 |
+
|
1222 |
+
|
1223 |
+
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
1224 |
+
img_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1225 |
+
mask_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1226 |
+
depth_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "depth_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1227 |
+
|
1228 |
+
if self.read_mask:
|
1229 |
+
alpha = self.load_mask(mask_path, return_type='np')
|
1230 |
+
else:
|
1231 |
+
alpha = None
|
1232 |
+
|
1233 |
+
if read_color:
|
1234 |
+
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt", camera_type=load_cam_type, read_depth=False, center_crop_size=center_crop_size)
|
1235 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
1236 |
+
img_tensors_out.append(img_tensor)
|
1237 |
+
|
1238 |
+
if read_normal:
|
1239 |
+
normal_path = os.path.join(load_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix))
|
1240 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt", camera_type=load_cam_type, center_crop_size=center_crop_size).permute(2, 0, 1)
|
1241 |
+
normal_tensors_out.append(normal_tensor)
|
1242 |
+
|
1243 |
+
# evelations, azimuths
|
1244 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
1245 |
+
elevations.append(elevation)
|
1246 |
+
azimuths.append(azimuth)
|
1247 |
+
|
1248 |
+
if self.load_switcher: # rgb input, use domain switcher to control the output type
|
1249 |
+
img_tensors_in = [
|
1250 |
+
self.load_image(os.path.join(load_dir, object_name[:self.subscene_tag], object_name,
|
1251 |
+
"rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)),
|
1252 |
+
bg_color, cond_alpha, return_type='pt', camera_type=load_cam_type,
|
1253 |
+
read_depth=False, center_crop_size=center_crop_size).permute(
|
1254 |
+
2, 0, 1)
|
1255 |
+
] * self.num_views
|
1256 |
+
|
1257 |
+
color_class = torch.tensor([0, 1]).float()
|
1258 |
+
color_task_embeddings = torch.stack([color_class] * self.num_views, dim=0) # (Nv, 2)
|
1259 |
+
|
1260 |
+
normal_class = torch.tensor([1, 0]).float()
|
1261 |
+
normal_task_embeddings = torch.stack([normal_class] * self.num_views, dim=0) # (Nv, 2)
|
1262 |
+
|
1263 |
+
|
1264 |
+
if read_color:
|
1265 |
+
task_embeddings = color_task_embeddings
|
1266 |
+
# img_tensors_out = depth_tensors_out
|
1267 |
+
elif read_normal:
|
1268 |
+
task_embeddings = normal_task_embeddings
|
1269 |
+
# img_tensors_out = normal_tensors_out
|
1270 |
+
|
1271 |
+
else: # for stage 1 training, the input and the output are in the same domain
|
1272 |
+
img_tensors_in = [img_tensors_out[0]] * self.num_views
|
1273 |
+
|
1274 |
+
empty_class = torch.tensor([0, 0]).float() # empty task
|
1275 |
+
empty_task_embeddings = torch.stack([empty_class] * self.num_views, dim=0)
|
1276 |
+
task_embeddings = empty_task_embeddings
|
1277 |
+
|
1278 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
1279 |
+
|
1280 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
1281 |
+
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
1282 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
1283 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
1284 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
1285 |
+
|
1286 |
+
if load_cam_type == 'ortho':
|
1287 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
1288 |
+
else:
|
1289 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
1290 |
+
|
1291 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1)
|
1292 |
+
|
1293 |
+
if self.load_cam_type:
|
1294 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
1295 |
+
|
1296 |
+
return {
|
1297 |
+
'elevations_cond': elevations_cond,
|
1298 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
1299 |
+
'elevations': elevations,
|
1300 |
+
'azimuths': azimuths,
|
1301 |
+
'elevations_deg': torch.rad2deg(elevations),
|
1302 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
1303 |
+
'imgs_in': img_tensors_in,
|
1304 |
+
'imgs_out': img_tensors_out,
|
1305 |
+
'normals_out': normal_tensors_out,
|
1306 |
+
'camera_embeddings': camera_embeddings,
|
1307 |
+
'color_task_embeddings': color_task_embeddings,
|
1308 |
+
'normal_task_embeddings': normal_task_embeddings
|
1309 |
+
}
|
1310 |
+
|
1311 |
+
def __getitem__(self, index):
|
1312 |
+
try:
|
1313 |
+
if self.pred_type == 'color':
|
1314 |
+
data = self.backup_data = self.__getitem_color__(index)
|
1315 |
+
elif self.pred_type == 'normal_depth':
|
1316 |
+
data = self.backup_data = self.__getitem_normal_depth__(index)
|
1317 |
+
elif self.pred_type == 'mixed_rgb_normal_depth':
|
1318 |
+
data = self.backup_data = self.__getitem_mixed__(index)
|
1319 |
+
elif self.pred_type == 'mixed_color_normal':
|
1320 |
+
data = self.backup_data = self.__getitem_image_normal_mixed__(index)
|
1321 |
+
elif self.pred_type == 'mixed_rgb_noraml_mask':
|
1322 |
+
data = self.backup_data = self.__getitem_mixed_rgb_noraml_mask__(index)
|
1323 |
+
elif self.pred_type == 'joint_color_normal':
|
1324 |
+
data = self.backup_data = self.__getitem_joint_rgb_noraml__(index)
|
1325 |
+
return data
|
1326 |
+
|
1327 |
+
except:
|
1328 |
+
print("load error ", self.all_objects[index%len(self.all_objects)])
|
1329 |
+
return self.backup_data
|
1330 |
+
|
1331 |
+
class ConcatDataset(torch.utils.data.Dataset):
|
1332 |
+
def __init__(self, datasets, weights):
|
1333 |
+
self.datasets = datasets
|
1334 |
+
self.weights = weights
|
1335 |
+
self.num_datasets = len(datasets)
|
1336 |
+
|
1337 |
+
def __getitem__(self, i):
|
1338 |
+
|
1339 |
+
chosen = random.choices(self.datasets, self.weights, k=1)[0]
|
1340 |
+
return chosen[i]
|
1341 |
+
|
1342 |
+
def __len__(self):
|
1343 |
+
return max(len(d) for d in self.datasets)
|
1344 |
+
|
1345 |
+
if __name__ == "__main__":
|
1346 |
+
train_dataset = ObjaverseDataset(
|
1347 |
+
root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings",
|
1348 |
+
size=(128, 128),
|
1349 |
+
ext="hdf5",
|
1350 |
+
default_trans=torch.zeros(3),
|
1351 |
+
return_paths=False,
|
1352 |
+
total_view=8,
|
1353 |
+
validation=False,
|
1354 |
+
object_list=None,
|
1355 |
+
views_mode='fourviews'
|
1356 |
+
)
|
1357 |
+
data0 = train_dataset[0]
|
1358 |
+
data1 = train_dataset[50]
|
1359 |
+
# print(data)
|
mv_diffusion_30/data/single_image_dataset.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
from omegaconf import DictConfig, ListConfig
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from pathlib import Path
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange
|
11 |
+
from typing import Literal, Tuple, Optional, Any
|
12 |
+
import cv2
|
13 |
+
import random
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os, sys
|
17 |
+
import math
|
18 |
+
|
19 |
+
from glob import glob
|
20 |
+
|
21 |
+
import PIL.Image
|
22 |
+
from .normal_utils import trans_normal, normal2img, img2normal
|
23 |
+
import pdb
|
24 |
+
from rembg import remove
|
25 |
+
|
26 |
+
|
27 |
+
import cv2
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
def add_margin(pil_img, color=0, size=256):
|
31 |
+
width, height = pil_img.size
|
32 |
+
result = Image.new(pil_img.mode, (size, size), color)
|
33 |
+
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
|
34 |
+
return result
|
35 |
+
|
36 |
+
def scale_and_place_object(image, scale_factor):
|
37 |
+
assert np.shape(image)[-1]==4 # RGBA
|
38 |
+
|
39 |
+
# Extract the alpha channel (transparency) and the object (RGB channels)
|
40 |
+
alpha_channel = image[:, :, 3]
|
41 |
+
|
42 |
+
# Find the bounding box coordinates of the object
|
43 |
+
coords = cv2.findNonZero(alpha_channel)
|
44 |
+
x, y, width, height = cv2.boundingRect(coords)
|
45 |
+
|
46 |
+
# Calculate the scale factor for resizing
|
47 |
+
original_height, original_width = image.shape[:2]
|
48 |
+
|
49 |
+
if width > height:
|
50 |
+
size = width
|
51 |
+
original_size = original_width
|
52 |
+
else:
|
53 |
+
size = height
|
54 |
+
original_size = original_height
|
55 |
+
|
56 |
+
scale_factor = min(scale_factor, size / (original_size+0.0))
|
57 |
+
|
58 |
+
new_size = scale_factor * original_size
|
59 |
+
scale_factor = new_size / size
|
60 |
+
|
61 |
+
# Calculate the new size based on the scale factor
|
62 |
+
new_width = int(width * scale_factor)
|
63 |
+
new_height = int(height * scale_factor)
|
64 |
+
|
65 |
+
center_x = original_width // 2
|
66 |
+
center_y = original_height // 2
|
67 |
+
|
68 |
+
paste_x = center_x - (new_width // 2)
|
69 |
+
paste_y = center_y - (new_height // 2)
|
70 |
+
|
71 |
+
# Resize the object (RGB channels) to the new size
|
72 |
+
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))
|
73 |
+
|
74 |
+
# Create a new RGBA image with the resized image
|
75 |
+
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)
|
76 |
+
|
77 |
+
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object
|
78 |
+
|
79 |
+
return new_image
|
80 |
+
|
81 |
+
class SingleImageDataset(Dataset):
|
82 |
+
def __init__(self,
|
83 |
+
root_dir: str,
|
84 |
+
num_views: int,
|
85 |
+
img_wh: Tuple[int, int],
|
86 |
+
bg_color: str,
|
87 |
+
crop_size: int = 224,
|
88 |
+
single_image: Optional[PIL.Image.Image] = None,
|
89 |
+
num_validation_samples: Optional[int] = None,
|
90 |
+
filepaths: Optional[list] = None,
|
91 |
+
cam_types: Optional[list] = None,
|
92 |
+
cond_type: Optional[str] = None,
|
93 |
+
load_cam_type: Optional[bool] = True
|
94 |
+
) -> None:
|
95 |
+
"""Create a dataset from a folder of images.
|
96 |
+
If you pass in a root directory it will be searched for images
|
97 |
+
ending in ext (ext can be a list)
|
98 |
+
"""
|
99 |
+
self.root_dir = root_dir
|
100 |
+
self.num_views = num_views
|
101 |
+
self.img_wh = img_wh
|
102 |
+
self.crop_size = crop_size
|
103 |
+
self.bg_color = bg_color
|
104 |
+
self.cond_type = cond_type
|
105 |
+
self.load_cam_type = load_cam_type
|
106 |
+
self.cam_types = cam_types
|
107 |
+
|
108 |
+
if self.num_views == 4:
|
109 |
+
self.view_types = ['front', 'right', 'back', 'left']
|
110 |
+
elif self.num_views == 5:
|
111 |
+
self.view_types = ['front', 'front_right', 'right', 'back', 'left']
|
112 |
+
elif self.num_views == 6:
|
113 |
+
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
114 |
+
|
115 |
+
self.fix_cam_pose_dir = "./mv_diffusion_30/data/fixed_poses/nine_views"
|
116 |
+
|
117 |
+
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
118 |
+
|
119 |
+
if single_image is None:
|
120 |
+
if filepaths is None:
|
121 |
+
# Get a list of all files in the directory
|
122 |
+
file_list = os.listdir(self.root_dir)
|
123 |
+
self.cam_types = ['ortho'] * len(file_list) + ['persp']* len(file_list)
|
124 |
+
file_list = file_list * 2
|
125 |
+
else:
|
126 |
+
file_list = filepaths
|
127 |
+
|
128 |
+
# Filter the files that end with .png or .jpg
|
129 |
+
self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg'))]
|
130 |
+
else:
|
131 |
+
self.file_list = None
|
132 |
+
|
133 |
+
# load all images
|
134 |
+
self.all_images = []
|
135 |
+
self.all_alphas = []
|
136 |
+
bg_color = self.get_bg_color()
|
137 |
+
|
138 |
+
if single_image is not None:
|
139 |
+
image, alpha = self.load_image(None, bg_color, return_type='pt', Imagefile=single_image)
|
140 |
+
self.all_images.append(image)
|
141 |
+
self.all_alphas.append(alpha)
|
142 |
+
else:
|
143 |
+
for file in self.file_list:
|
144 |
+
print(os.path.join(self.root_dir, file))
|
145 |
+
image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt')
|
146 |
+
self.all_images.append(image)
|
147 |
+
self.all_alphas.append(alpha)
|
148 |
+
#
|
149 |
+
# assert len(self.file_list) == len(self.cam_types)
|
150 |
+
self.all_images = self.all_images[:num_validation_samples]
|
151 |
+
self.all_alphas = self.all_alphas[:num_validation_samples]
|
152 |
+
|
153 |
+
def __len__(self):
|
154 |
+
return len(self.all_images)
|
155 |
+
|
156 |
+
def load_fixed_poses(self):
|
157 |
+
poses = {}
|
158 |
+
for face in self.view_types:
|
159 |
+
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
|
160 |
+
poses[face] = RT
|
161 |
+
|
162 |
+
return poses
|
163 |
+
|
164 |
+
def cartesian_to_spherical(self, xyz):
|
165 |
+
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
166 |
+
xy = xyz[:,0]**2 + xyz[:,1]**2
|
167 |
+
z = np.sqrt(xy + xyz[:,2]**2)
|
168 |
+
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
169 |
+
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
170 |
+
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
171 |
+
return np.array([theta, azimuth, z])
|
172 |
+
|
173 |
+
def get_T(self, target_RT, cond_RT):
|
174 |
+
R, T = target_RT[:3, :3], target_RT[:, -1]
|
175 |
+
T_target = -R.T @ T # change to cam2world
|
176 |
+
|
177 |
+
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
178 |
+
T_cond = -R.T @ T
|
179 |
+
|
180 |
+
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
181 |
+
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
182 |
+
|
183 |
+
d_theta = theta_target - theta_cond
|
184 |
+
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
185 |
+
d_z = z_target - z_cond
|
186 |
+
|
187 |
+
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
188 |
+
return d_theta, d_azimuth
|
189 |
+
|
190 |
+
def get_bg_color(self):
|
191 |
+
if self.bg_color == 'white':
|
192 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
193 |
+
elif self.bg_color == 'black':
|
194 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
195 |
+
elif self.bg_color == 'gray':
|
196 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
197 |
+
elif self.bg_color == 'random':
|
198 |
+
bg_color = np.random.rand(3)
|
199 |
+
elif isinstance(self.bg_color, float):
|
200 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
201 |
+
else:
|
202 |
+
raise NotImplementedError
|
203 |
+
return bg_color
|
204 |
+
|
205 |
+
|
206 |
+
def load_image(self, img_path, bg_color, return_type='np', Imagefile=None):
|
207 |
+
# pil always returns uint8
|
208 |
+
if Imagefile is None:
|
209 |
+
image_input = Image.open(img_path)
|
210 |
+
else:
|
211 |
+
image_input = Imagefile
|
212 |
+
image_size = self.img_wh[0]
|
213 |
+
|
214 |
+
|
215 |
+
# if np.asarray(image_input).shape[-1] != 4:
|
216 |
+
# print('move background for:', image_input)
|
217 |
+
# image_input = remove(image_input)
|
218 |
+
|
219 |
+
if self.crop_size!=-1:
|
220 |
+
alpha_np = np.asarray(image_input)[:, :, 3]
|
221 |
+
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
|
222 |
+
min_x, min_y = np.min(coords, 0)
|
223 |
+
max_x, max_y = np.max(coords, 0)
|
224 |
+
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
|
225 |
+
h, w = ref_img_.height, ref_img_.width
|
226 |
+
scale = self.crop_size / max(h, w)
|
227 |
+
h_, w_ = int(scale * h), int(scale * w)
|
228 |
+
ref_img_ = ref_img_.resize((w_, h_))
|
229 |
+
image_input = add_margin(ref_img_, size=image_size)
|
230 |
+
else:
|
231 |
+
image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
|
232 |
+
image_input = image_input.resize((image_size, image_size))
|
233 |
+
|
234 |
+
# img = scale_and_place_object(img, self.scale_ratio)
|
235 |
+
img = np.array(image_input)
|
236 |
+
img = img.astype(np.float32) / 255. # [0, 1]
|
237 |
+
assert img.shape[-1] == 4 # RGBA
|
238 |
+
|
239 |
+
alpha = img[...,3:4]
|
240 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
241 |
+
|
242 |
+
if return_type == "np":
|
243 |
+
pass
|
244 |
+
elif return_type == "pt":
|
245 |
+
img = torch.from_numpy(img)
|
246 |
+
alpha = torch.from_numpy(alpha)
|
247 |
+
else:
|
248 |
+
raise NotImplementedError
|
249 |
+
|
250 |
+
return img, alpha
|
251 |
+
|
252 |
+
|
253 |
+
def __len__(self):
|
254 |
+
return len(self.all_images)
|
255 |
+
|
256 |
+
def __getitem__(self, index):
|
257 |
+
|
258 |
+
image = self.all_images[index%len(self.all_images)]
|
259 |
+
alpha = self.all_alphas[index%len(self.all_images)]
|
260 |
+
if self.load_cam_type:
|
261 |
+
cam_type = self.cam_types[index%len(self.all_images)]
|
262 |
+
else:
|
263 |
+
cam_type = 'ortho'
|
264 |
+
if self.file_list is not None:
|
265 |
+
filename = self.file_list[index%len(self.all_images)].replace(".png", "")
|
266 |
+
else:
|
267 |
+
filename = 'null'
|
268 |
+
|
269 |
+
cond_w2c = self.fix_cam_poses['front']
|
270 |
+
|
271 |
+
tgt_w2cs = [self.fix_cam_poses[view] for view in self.view_types]
|
272 |
+
|
273 |
+
elevations = []
|
274 |
+
azimuths = []
|
275 |
+
|
276 |
+
img_tensors_in = [
|
277 |
+
image.permute(2, 0, 1)
|
278 |
+
] * self.num_views
|
279 |
+
|
280 |
+
alpha_tensors_in = [
|
281 |
+
alpha.permute(2, 0, 1)
|
282 |
+
] * self.num_views
|
283 |
+
|
284 |
+
for view, tgt_w2c in zip(self.view_types, tgt_w2cs):
|
285 |
+
# evelations, azimuths
|
286 |
+
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
287 |
+
elevations.append(elevation)
|
288 |
+
azimuths.append(azimuth)
|
289 |
+
|
290 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
291 |
+
alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
292 |
+
|
293 |
+
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
294 |
+
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
295 |
+
elevations_cond = torch.as_tensor([0] * self.num_views).float()
|
296 |
+
|
297 |
+
normal_class = torch.tensor([1, 0]).float()
|
298 |
+
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
299 |
+
color_class = torch.tensor([0, 1]).float()
|
300 |
+
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
301 |
+
depth_class = torch.tensor([1, 1]).float()
|
302 |
+
depth_task_embeddings = torch.stack([depth_class]*self.num_views, dim=0)
|
303 |
+
|
304 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
305 |
+
|
306 |
+
print("camera type:", cam_type)
|
307 |
+
if cam_type == 'ortho':
|
308 |
+
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
|
309 |
+
else:
|
310 |
+
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
|
311 |
+
|
312 |
+
if self.load_cam_type:
|
313 |
+
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
|
314 |
+
|
315 |
+
out = {
|
316 |
+
'elevations_cond': elevations_cond,
|
317 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
318 |
+
'elevations': elevations,
|
319 |
+
'azimuths': azimuths,
|
320 |
+
'elevations_deg': torch.rad2deg(elevations),
|
321 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
322 |
+
'imgs_in': img_tensors_in,
|
323 |
+
'alphas': alpha_tensors_in,
|
324 |
+
'camera_embeddings': camera_embeddings,
|
325 |
+
'normal_task_embeddings': normal_task_embeddings,
|
326 |
+
'color_task_embeddings': color_task_embeddings,
|
327 |
+
'depth_task_embeddings': depth_task_embeddings,
|
328 |
+
'filename': filename,
|
329 |
+
'cam_type': cam_type
|
330 |
+
}
|
331 |
+
|
332 |
+
return out
|
333 |
+
|
334 |
+
|
mv_diffusion_30/models/transformer_mv2d.py
ADDED
@@ -0,0 +1,1093 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
# from torch.nn.attention import SDPBackend, sdpa_kernel
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
24 |
+
from diffusers.utils import BaseOutput, deprecate
|
25 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
26 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
27 |
+
from diffusers.models.embeddings import PatchEmbed
|
28 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
29 |
+
from diffusers.models.modeling_utils import ModelMixin
|
30 |
+
from diffusers.utils.import_utils import is_xformers_available
|
31 |
+
|
32 |
+
from einops import rearrange, repeat
|
33 |
+
import pdb
|
34 |
+
import random
|
35 |
+
|
36 |
+
|
37 |
+
# if is_xformers_available():
|
38 |
+
# import xformers
|
39 |
+
# import xformers.ops
|
40 |
+
# else:
|
41 |
+
# xformers = None
|
42 |
+
|
43 |
+
def my_repeat(tensor, num_repeats):
|
44 |
+
"""
|
45 |
+
Repeat a tensor along a given dimension
|
46 |
+
"""
|
47 |
+
if len(tensor.shape) == 3:
|
48 |
+
return repeat(tensor, "b d c -> (b v) d c", v=num_repeats)
|
49 |
+
elif len(tensor.shape) == 4:
|
50 |
+
return repeat(tensor, "a b d c -> (a v) b d c", v=num_repeats)
|
51 |
+
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
55 |
+
"""
|
56 |
+
The output of [`Transformer2DModel`].
|
57 |
+
|
58 |
+
Args:
|
59 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
60 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
61 |
+
distributions for the unnoised latent pixels.
|
62 |
+
"""
|
63 |
+
|
64 |
+
sample: torch.FloatTensor
|
65 |
+
|
66 |
+
|
67 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
68 |
+
"""
|
69 |
+
A 2D Transformer model for image-like data.
|
70 |
+
|
71 |
+
Parameters:
|
72 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
73 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
74 |
+
in_channels (`int`, *optional*):
|
75 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
76 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
77 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
78 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
79 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
80 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
81 |
+
num_vector_embeds (`int`, *optional*):
|
82 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
83 |
+
Includes the class for the masked latent pixel.
|
84 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
85 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
86 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
87 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
88 |
+
added to the hidden states.
|
89 |
+
|
90 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
91 |
+
attention_bias (`bool`, *optional*):
|
92 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
93 |
+
"""
|
94 |
+
|
95 |
+
@register_to_config
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
num_attention_heads: int = 16,
|
99 |
+
attention_head_dim: int = 88,
|
100 |
+
in_channels: Optional[int] = None,
|
101 |
+
out_channels: Optional[int] = None,
|
102 |
+
num_layers: int = 1,
|
103 |
+
dropout: float = 0.0,
|
104 |
+
norm_num_groups: int = 32,
|
105 |
+
cross_attention_dim: Optional[int] = None,
|
106 |
+
attention_bias: bool = False,
|
107 |
+
sample_size: Optional[int] = None,
|
108 |
+
num_vector_embeds: Optional[int] = None,
|
109 |
+
patch_size: Optional[int] = None,
|
110 |
+
activation_fn: str = "geglu",
|
111 |
+
num_embeds_ada_norm: Optional[int] = None,
|
112 |
+
use_linear_projection: bool = False,
|
113 |
+
only_cross_attention: bool = False,
|
114 |
+
upcast_attention: bool = False,
|
115 |
+
norm_type: str = "layer_norm",
|
116 |
+
norm_elementwise_affine: bool = True,
|
117 |
+
num_views: int = 1,
|
118 |
+
cd_attention_last: bool=False,
|
119 |
+
cd_attention_mid: bool=False,
|
120 |
+
multiview_attention: bool=True,
|
121 |
+
sparse_mv_attention: bool = False,
|
122 |
+
mvcd_attention: bool=False
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.use_linear_projection = use_linear_projection
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.attention_head_dim = attention_head_dim
|
128 |
+
inner_dim = num_attention_heads * attention_head_dim
|
129 |
+
|
130 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
131 |
+
# Define whether input is continuous or discrete depending on configuration
|
132 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
133 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
134 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
135 |
+
|
136 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
137 |
+
deprecation_message = (
|
138 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
139 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
140 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
141 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
142 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
143 |
+
)
|
144 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
145 |
+
norm_type = "ada_norm"
|
146 |
+
|
147 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
148 |
+
raise ValueError(
|
149 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
150 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
151 |
+
)
|
152 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
153 |
+
raise ValueError(
|
154 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
155 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
156 |
+
)
|
157 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
158 |
+
raise ValueError(
|
159 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
160 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
161 |
+
)
|
162 |
+
|
163 |
+
# 2. Define input layers
|
164 |
+
if self.is_input_continuous:
|
165 |
+
self.in_channels = in_channels
|
166 |
+
|
167 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
168 |
+
if use_linear_projection:
|
169 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
170 |
+
else:
|
171 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
172 |
+
elif self.is_input_vectorized:
|
173 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
174 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
175 |
+
|
176 |
+
self.height = sample_size
|
177 |
+
self.width = sample_size
|
178 |
+
self.num_vector_embeds = num_vector_embeds
|
179 |
+
self.num_latent_pixels = self.height * self.width
|
180 |
+
|
181 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
182 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
183 |
+
)
|
184 |
+
elif self.is_input_patches:
|
185 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
186 |
+
|
187 |
+
self.height = sample_size
|
188 |
+
self.width = sample_size
|
189 |
+
|
190 |
+
self.patch_size = patch_size
|
191 |
+
self.pos_embed = PatchEmbed(
|
192 |
+
height=sample_size,
|
193 |
+
width=sample_size,
|
194 |
+
patch_size=patch_size,
|
195 |
+
in_channels=in_channels,
|
196 |
+
embed_dim=inner_dim,
|
197 |
+
)
|
198 |
+
|
199 |
+
# 3. Define transformers blocks
|
200 |
+
self.transformer_blocks = nn.ModuleList(
|
201 |
+
[
|
202 |
+
BasicMVTransformerBlock(
|
203 |
+
inner_dim,
|
204 |
+
num_attention_heads,
|
205 |
+
attention_head_dim,
|
206 |
+
dropout=dropout,
|
207 |
+
cross_attention_dim=cross_attention_dim,
|
208 |
+
activation_fn=activation_fn,
|
209 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
210 |
+
attention_bias=attention_bias,
|
211 |
+
only_cross_attention=only_cross_attention,
|
212 |
+
upcast_attention=upcast_attention,
|
213 |
+
norm_type=norm_type,
|
214 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
215 |
+
num_views=num_views,
|
216 |
+
cd_attention_last=cd_attention_last,
|
217 |
+
cd_attention_mid=cd_attention_mid,
|
218 |
+
multiview_attention=multiview_attention,
|
219 |
+
sparse_mv_attention=sparse_mv_attention,
|
220 |
+
mvcd_attention=mvcd_attention
|
221 |
+
)
|
222 |
+
for d in range(num_layers)
|
223 |
+
]
|
224 |
+
)
|
225 |
+
|
226 |
+
# 4. Define output layers
|
227 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
228 |
+
if self.is_input_continuous:
|
229 |
+
# TODO: should use out_channels for continuous projections
|
230 |
+
if use_linear_projection:
|
231 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
232 |
+
else:
|
233 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
234 |
+
elif self.is_input_vectorized:
|
235 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
236 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
237 |
+
elif self.is_input_patches:
|
238 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
239 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
240 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self,
|
244 |
+
hidden_states: torch.Tensor,
|
245 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
246 |
+
timestep: Optional[torch.LongTensor] = None,
|
247 |
+
class_labels: Optional[torch.LongTensor] = None,
|
248 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
249 |
+
attention_mask: Optional[torch.Tensor] = None,
|
250 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
251 |
+
return_dict: bool = True,
|
252 |
+
):
|
253 |
+
"""
|
254 |
+
The [`Transformer2DModel`] forward method.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
258 |
+
Input `hidden_states`.
|
259 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
260 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
261 |
+
self-attention.
|
262 |
+
timestep ( `torch.LongTensor`, *optional*):
|
263 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
264 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
265 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
266 |
+
`AdaLayerZeroNorm`.
|
267 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
268 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
269 |
+
|
270 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
271 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
272 |
+
|
273 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
274 |
+
above. This bias will be added to the cross-attention scores.
|
275 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
276 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
277 |
+
tuple.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
281 |
+
`tuple` where the first element is the sample tensor.
|
282 |
+
"""
|
283 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
284 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
285 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
286 |
+
# expects mask of shape:
|
287 |
+
# [batch, key_tokens]
|
288 |
+
# adds singleton query_tokens dimension:
|
289 |
+
# [batch, 1, key_tokens]
|
290 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
291 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
292 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
293 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
294 |
+
# assume that mask is expressed as:
|
295 |
+
# (1 = keep, 0 = discard)
|
296 |
+
# convert mask into a bias that can be added to attention scores:
|
297 |
+
# (keep = +0, discard = -10000.0)
|
298 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
299 |
+
attention_mask = attention_mask.unsqueeze(1)
|
300 |
+
|
301 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
302 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
303 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
304 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
305 |
+
|
306 |
+
# 1. Input
|
307 |
+
if self.is_input_continuous:
|
308 |
+
batch, _, height, width = hidden_states.shape
|
309 |
+
residual = hidden_states
|
310 |
+
|
311 |
+
hidden_states = self.norm(hidden_states)
|
312 |
+
if not self.use_linear_projection:
|
313 |
+
hidden_states = self.proj_in(hidden_states)
|
314 |
+
inner_dim = hidden_states.shape[1]
|
315 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
316 |
+
else:
|
317 |
+
inner_dim = hidden_states.shape[1]
|
318 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
319 |
+
hidden_states = self.proj_in(hidden_states)
|
320 |
+
elif self.is_input_vectorized:
|
321 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
322 |
+
elif self.is_input_patches:
|
323 |
+
hidden_states = self.pos_embed(hidden_states)
|
324 |
+
|
325 |
+
# 2. Blocks
|
326 |
+
for block in self.transformer_blocks:
|
327 |
+
hidden_states = block(
|
328 |
+
hidden_states,
|
329 |
+
attention_mask=attention_mask,
|
330 |
+
encoder_hidden_states=encoder_hidden_states,
|
331 |
+
encoder_attention_mask=encoder_attention_mask,
|
332 |
+
timestep=timestep,
|
333 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
334 |
+
class_labels=class_labels,
|
335 |
+
)
|
336 |
+
|
337 |
+
# 3. Output
|
338 |
+
if self.is_input_continuous:
|
339 |
+
if not self.use_linear_projection:
|
340 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
341 |
+
hidden_states = self.proj_out(hidden_states)
|
342 |
+
else:
|
343 |
+
hidden_states = self.proj_out(hidden_states)
|
344 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
345 |
+
|
346 |
+
output = hidden_states + residual
|
347 |
+
elif self.is_input_vectorized:
|
348 |
+
hidden_states = self.norm_out(hidden_states)
|
349 |
+
logits = self.out(hidden_states)
|
350 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
351 |
+
logits = logits.permute(0, 2, 1)
|
352 |
+
|
353 |
+
# log(p(x_0))
|
354 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
355 |
+
elif self.is_input_patches:
|
356 |
+
# TODO: cleanup!
|
357 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
358 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
359 |
+
)
|
360 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
361 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
362 |
+
hidden_states = self.proj_out_2(hidden_states)
|
363 |
+
|
364 |
+
# unpatchify
|
365 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
366 |
+
hidden_states = hidden_states.reshape(
|
367 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
368 |
+
)
|
369 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
370 |
+
output = hidden_states.reshape(
|
371 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
372 |
+
)
|
373 |
+
|
374 |
+
if not return_dict:
|
375 |
+
return (output,)
|
376 |
+
|
377 |
+
return TransformerMV2DModelOutput(sample=output)
|
378 |
+
|
379 |
+
|
380 |
+
@maybe_allow_in_graph
|
381 |
+
class BasicMVTransformerBlock(nn.Module):
|
382 |
+
r"""
|
383 |
+
A basic Transformer block.
|
384 |
+
|
385 |
+
Parameters:
|
386 |
+
dim (`int`): The number of channels in the input and output.
|
387 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
388 |
+
attention_head_dim (`int`): The number of channels in each head.
|
389 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
390 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
391 |
+
only_cross_attention (`bool`, *optional*):
|
392 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
393 |
+
double_self_attention (`bool`, *optional*):
|
394 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
395 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
396 |
+
num_embeds_ada_norm (:
|
397 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
398 |
+
attention_bias (:
|
399 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
400 |
+
"""
|
401 |
+
|
402 |
+
def __init__(
|
403 |
+
self,
|
404 |
+
dim: int,
|
405 |
+
num_attention_heads: int,
|
406 |
+
attention_head_dim: int,
|
407 |
+
dropout=0.0,
|
408 |
+
cross_attention_dim: Optional[int] = None,
|
409 |
+
activation_fn: str = "geglu",
|
410 |
+
num_embeds_ada_norm: Optional[int] = None,
|
411 |
+
attention_bias: bool = False,
|
412 |
+
only_cross_attention: bool = False,
|
413 |
+
double_self_attention: bool = False,
|
414 |
+
upcast_attention: bool = False,
|
415 |
+
norm_elementwise_affine: bool = True,
|
416 |
+
norm_type: str = "layer_norm",
|
417 |
+
final_dropout: bool = False,
|
418 |
+
num_views: int = 1,
|
419 |
+
cd_attention_last: bool = False,
|
420 |
+
cd_attention_mid: bool = False,
|
421 |
+
multiview_attention: bool = True,
|
422 |
+
sparse_mv_attention: bool = False,
|
423 |
+
mvcd_attention: bool = False
|
424 |
+
):
|
425 |
+
super().__init__()
|
426 |
+
self.only_cross_attention = only_cross_attention
|
427 |
+
|
428 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
429 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
430 |
+
|
431 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
432 |
+
raise ValueError(
|
433 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
434 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
435 |
+
)
|
436 |
+
|
437 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
438 |
+
# 1. Self-Attn
|
439 |
+
if self.use_ada_layer_norm:
|
440 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
441 |
+
elif self.use_ada_layer_norm_zero:
|
442 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
443 |
+
else:
|
444 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
445 |
+
|
446 |
+
self.multiview_attention = multiview_attention
|
447 |
+
self.sparse_mv_attention = sparse_mv_attention
|
448 |
+
self.mvcd_attention = mvcd_attention
|
449 |
+
|
450 |
+
self.attn1 = CustomAttention(
|
451 |
+
query_dim=dim,
|
452 |
+
heads=num_attention_heads,
|
453 |
+
dim_head=attention_head_dim,
|
454 |
+
dropout=dropout,
|
455 |
+
bias=attention_bias,
|
456 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
457 |
+
upcast_attention=upcast_attention,
|
458 |
+
processor=MVAttnProcessor()
|
459 |
+
)
|
460 |
+
|
461 |
+
# 2. Cross-Attn
|
462 |
+
if cross_attention_dim is not None or double_self_attention:
|
463 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
464 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
465 |
+
# the second cross attention block.
|
466 |
+
self.norm2 = (
|
467 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
468 |
+
if self.use_ada_layer_norm
|
469 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
470 |
+
)
|
471 |
+
self.attn2 = Attention(
|
472 |
+
query_dim=dim,
|
473 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
474 |
+
heads=num_attention_heads,
|
475 |
+
dim_head=attention_head_dim,
|
476 |
+
dropout=dropout,
|
477 |
+
bias=attention_bias,
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
# processor=CrossAttnProcessor()
|
480 |
+
) # is self-attn if encoder_hidden_states is none
|
481 |
+
else:
|
482 |
+
self.norm2 = None
|
483 |
+
self.attn2 = None
|
484 |
+
|
485 |
+
# 3. Feed-forward
|
486 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
487 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
488 |
+
|
489 |
+
# let chunk size default to None
|
490 |
+
self._chunk_size = None
|
491 |
+
self._chunk_dim = 0
|
492 |
+
|
493 |
+
self.num_views = num_views
|
494 |
+
|
495 |
+
self.cd_attention_last = cd_attention_last
|
496 |
+
|
497 |
+
if self.cd_attention_last:
|
498 |
+
# Joint task -Attn
|
499 |
+
self.attn_joint_last = Attention(
|
500 |
+
query_dim=dim,
|
501 |
+
heads=num_attention_heads,
|
502 |
+
dim_head=attention_head_dim,
|
503 |
+
dropout=dropout,
|
504 |
+
bias=attention_bias,
|
505 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
506 |
+
upcast_attention=upcast_attention,
|
507 |
+
processor=JointAttnProcessor()
|
508 |
+
)
|
509 |
+
nn.init.zeros_(self.attn_joint_last.to_out[0].weight.data)
|
510 |
+
self.norm_joint_last = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
511 |
+
|
512 |
+
|
513 |
+
self.cd_attention_mid = cd_attention_mid
|
514 |
+
|
515 |
+
if self.cd_attention_mid:
|
516 |
+
# print("cross-domain attn in the middle")
|
517 |
+
# Joint task -Attn
|
518 |
+
self.attn_joint_mid = Attention(
|
519 |
+
query_dim=dim,
|
520 |
+
heads=num_attention_heads,
|
521 |
+
dim_head=attention_head_dim,
|
522 |
+
dropout=dropout,
|
523 |
+
bias=attention_bias,
|
524 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
525 |
+
upcast_attention=upcast_attention,
|
526 |
+
processor=JointAttnProcessor()
|
527 |
+
)
|
528 |
+
nn.init.zeros_(self.attn_joint_mid.to_out[0].weight.data)
|
529 |
+
self.norm_joint_mid = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
530 |
+
|
531 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
532 |
+
# Sets chunk feed-forward
|
533 |
+
self._chunk_size = chunk_size
|
534 |
+
self._chunk_dim = dim
|
535 |
+
|
536 |
+
def forward(
|
537 |
+
self,
|
538 |
+
hidden_states: torch.FloatTensor,
|
539 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
540 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
541 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
542 |
+
timestep: Optional[torch.LongTensor] = None,
|
543 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
544 |
+
class_labels: Optional[torch.LongTensor] = None,
|
545 |
+
):
|
546 |
+
"""
|
547 |
+
|
548 |
+
:type attention_mask: object
|
549 |
+
"""
|
550 |
+
assert attention_mask is None # not supported yet
|
551 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
552 |
+
# 1. Self-Attention
|
553 |
+
if self.use_ada_layer_norm:
|
554 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
555 |
+
elif self.use_ada_layer_norm_zero:
|
556 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
557 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
558 |
+
)
|
559 |
+
else:
|
560 |
+
norm_hidden_states = self.norm1(hidden_states)
|
561 |
+
|
562 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
563 |
+
|
564 |
+
attn_output = self.attn1(norm_hidden_states,
|
565 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
566 |
+
attention_mask=attention_mask,
|
567 |
+
num_views=self.num_views,
|
568 |
+
multiview_attention=self.multiview_attention,
|
569 |
+
sparse_mv_attention=self.sparse_mv_attention,
|
570 |
+
mvcd_attention=self.mvcd_attention,
|
571 |
+
**cross_attention_kwargs,
|
572 |
+
)
|
573 |
+
|
574 |
+
|
575 |
+
if self.use_ada_layer_norm_zero:
|
576 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
577 |
+
hidden_states = attn_output + hidden_states
|
578 |
+
|
579 |
+
# joint attention twice
|
580 |
+
if self.cd_attention_mid:
|
581 |
+
norm_hidden_states = (
|
582 |
+
self.norm_joint_mid(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_mid(hidden_states)
|
583 |
+
)
|
584 |
+
hidden_states = self.attn_joint_mid(norm_hidden_states) + hidden_states
|
585 |
+
|
586 |
+
# 2. Cross-Attention
|
587 |
+
if self.attn2 is not None:
|
588 |
+
norm_hidden_states = (
|
589 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
590 |
+
)
|
591 |
+
|
592 |
+
attn_output = self.attn2(
|
593 |
+
norm_hidden_states,
|
594 |
+
encoder_hidden_states=encoder_hidden_states,
|
595 |
+
attention_mask=encoder_attention_mask,
|
596 |
+
**cross_attention_kwargs,
|
597 |
+
)
|
598 |
+
hidden_states = attn_output + hidden_states
|
599 |
+
|
600 |
+
# 3. Feed-forward
|
601 |
+
norm_hidden_states = self.norm3(hidden_states)
|
602 |
+
|
603 |
+
if self.use_ada_layer_norm_zero:
|
604 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
605 |
+
|
606 |
+
if self._chunk_size is not None:
|
607 |
+
# "feed_forward_chunk_size" can be used to save memory
|
608 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
609 |
+
raise ValueError(
|
610 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
611 |
+
)
|
612 |
+
|
613 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
614 |
+
ff_output = torch.cat(
|
615 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
616 |
+
dim=self._chunk_dim,
|
617 |
+
)
|
618 |
+
else:
|
619 |
+
ff_output = self.ff(norm_hidden_states)
|
620 |
+
|
621 |
+
if self.use_ada_layer_norm_zero:
|
622 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
623 |
+
|
624 |
+
hidden_states = ff_output + hidden_states
|
625 |
+
|
626 |
+
if self.cd_attention_last:
|
627 |
+
norm_hidden_states = (
|
628 |
+
self.norm_joint_last(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_last(hidden_states)
|
629 |
+
)
|
630 |
+
hidden_states = self.attn_joint_last(norm_hidden_states) + hidden_states
|
631 |
+
|
632 |
+
return hidden_states
|
633 |
+
|
634 |
+
|
635 |
+
class CustomAttention(Attention):
|
636 |
+
def set_use_memory_efficient_attention_xformers(
|
637 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
638 |
+
):
|
639 |
+
processor = XFormersMVAttnProcessor()
|
640 |
+
self.set_processor(processor)
|
641 |
+
# print("using xformers attention processor")
|
642 |
+
|
643 |
+
|
644 |
+
class CustomJointAttention(Attention):
|
645 |
+
def set_use_memory_efficient_attention_xformers(
|
646 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
647 |
+
):
|
648 |
+
processor = XFormersJointAttnProcessor()
|
649 |
+
self.set_processor(processor)
|
650 |
+
# print("using xformers attention processor")
|
651 |
+
|
652 |
+
class MVAttnProcessor:
|
653 |
+
r"""
|
654 |
+
Default processor for performing attention-related computations.
|
655 |
+
"""
|
656 |
+
|
657 |
+
def __call__(
|
658 |
+
self,
|
659 |
+
attn: Attention,
|
660 |
+
hidden_states,
|
661 |
+
encoder_hidden_states=None,
|
662 |
+
attention_mask=None,
|
663 |
+
temb=None,
|
664 |
+
num_views=1,
|
665 |
+
multiview_attention=True,
|
666 |
+
sparse_mv_attention=False,
|
667 |
+
mvcd_attention=False,
|
668 |
+
):
|
669 |
+
residual = hidden_states
|
670 |
+
|
671 |
+
if attn.spatial_norm is not None:
|
672 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
673 |
+
|
674 |
+
input_ndim = hidden_states.ndim
|
675 |
+
|
676 |
+
if input_ndim == 4:
|
677 |
+
batch_size, channel, height, width = hidden_states.shape
|
678 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
679 |
+
|
680 |
+
batch_size, sequence_length, input_dim = (
|
681 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
682 |
+
)
|
683 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
684 |
+
|
685 |
+
if attn.group_norm is not None:
|
686 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
687 |
+
|
688 |
+
query = attn.to_q(hidden_states)
|
689 |
+
|
690 |
+
if encoder_hidden_states is None:
|
691 |
+
encoder_hidden_states = hidden_states
|
692 |
+
elif attn.norm_cross:
|
693 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
694 |
+
|
695 |
+
key = attn.to_k(encoder_hidden_states)
|
696 |
+
value = attn.to_v(encoder_hidden_states)
|
697 |
+
|
698 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
699 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
700 |
+
# pdb.set_trace()
|
701 |
+
# multi-view self-attention
|
702 |
+
if multiview_attention:
|
703 |
+
key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
704 |
+
value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
705 |
+
|
706 |
+
# batch, n_heads, n_tokens, channel
|
707 |
+
query = attn.head_to_batch_dim(query, out_dim=4).contiguous()
|
708 |
+
key = attn.head_to_batch_dim(key, out_dim=4).contiguous()
|
709 |
+
value = attn.head_to_batch_dim(value, out_dim=4).contiguous()
|
710 |
+
|
711 |
+
with torch.backends.cuda.sdp_kernel(
|
712 |
+
enable_flash=True,
|
713 |
+
enable_math=False,
|
714 |
+
enable_mem_efficient=True
|
715 |
+
):
|
716 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value)
|
717 |
+
|
718 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, sequence_length, input_dim)
|
719 |
+
|
720 |
+
# linear proj
|
721 |
+
hidden_states = attn.to_out[0](hidden_states)
|
722 |
+
# dropout
|
723 |
+
hidden_states = attn.to_out[1](hidden_states)
|
724 |
+
|
725 |
+
if input_ndim == 4:
|
726 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
727 |
+
|
728 |
+
if attn.residual_connection:
|
729 |
+
hidden_states = hidden_states + residual
|
730 |
+
|
731 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
732 |
+
|
733 |
+
return hidden_states
|
734 |
+
|
735 |
+
|
736 |
+
class XFormersMVAttnProcessor:
|
737 |
+
r"""
|
738 |
+
Default processor for performing attention-related computations.
|
739 |
+
"""
|
740 |
+
|
741 |
+
def __call__(
|
742 |
+
self,
|
743 |
+
attn: Attention,
|
744 |
+
hidden_states,
|
745 |
+
encoder_hidden_states=None,
|
746 |
+
attention_mask=None,
|
747 |
+
temb=None,
|
748 |
+
num_views=1.,
|
749 |
+
multiview_attention=True,
|
750 |
+
sparse_mv_attention=False,
|
751 |
+
mvcd_attention=False,
|
752 |
+
):
|
753 |
+
residual = hidden_states
|
754 |
+
|
755 |
+
if attn.spatial_norm is not None:
|
756 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
757 |
+
|
758 |
+
input_ndim = hidden_states.ndim
|
759 |
+
|
760 |
+
if input_ndim == 4:
|
761 |
+
batch_size, channel, height, width = hidden_states.shape
|
762 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
763 |
+
|
764 |
+
batch_size, sequence_length, _ = (
|
765 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
766 |
+
)
|
767 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
768 |
+
|
769 |
+
# from yuancheng; here attention_mask is None
|
770 |
+
if attention_mask is not None:
|
771 |
+
# expand our mask's singleton query_tokens dimension:
|
772 |
+
# [batch*heads, 1, key_tokens] ->
|
773 |
+
# [batch*heads, query_tokens, key_tokens]
|
774 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
775 |
+
# [batch*heads, query_tokens, key_tokens]
|
776 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
777 |
+
_, query_tokens, _ = hidden_states.shape
|
778 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
779 |
+
|
780 |
+
if attn.group_norm is not None:
|
781 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
782 |
+
|
783 |
+
query = attn.to_q(hidden_states)
|
784 |
+
|
785 |
+
if encoder_hidden_states is None:
|
786 |
+
encoder_hidden_states = hidden_states
|
787 |
+
elif attn.norm_cross:
|
788 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
789 |
+
|
790 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
791 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
792 |
+
|
793 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
794 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
795 |
+
# pdb.set_trace()
|
796 |
+
# multi-view self-attention
|
797 |
+
if multiview_attention:
|
798 |
+
if not sparse_mv_attention:
|
799 |
+
key = my_repeat(rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
800 |
+
value = my_repeat(rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
801 |
+
else:
|
802 |
+
key_front = my_repeat(rearrange(key_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views) # [(b t), d, c]
|
803 |
+
value_front = my_repeat(rearrange(value_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views)
|
804 |
+
key = torch.cat([key_front, key_raw], dim=1) # shape (b t) (2 d) c
|
805 |
+
value = torch.cat([value_front, value_raw], dim=1)
|
806 |
+
|
807 |
+
else:
|
808 |
+
# print("don't use multiview attention.")
|
809 |
+
key = key_raw
|
810 |
+
value = value_raw
|
811 |
+
|
812 |
+
query = attn.head_to_batch_dim(query)
|
813 |
+
key = attn.head_to_batch_dim(key)
|
814 |
+
value = attn.head_to_batch_dim(value)
|
815 |
+
|
816 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
817 |
+
# for flash attention implementation
|
818 |
+
# with torch.backends.cuda.sdp_kernel(enable_math=False):
|
819 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, attn_bias=attention_mask)
|
820 |
+
# hidden_states = attn.batch_to_head_dim(hidden_states)
|
821 |
+
|
822 |
+
# linear proj
|
823 |
+
hidden_states = attn.to_out[0](hidden_states)
|
824 |
+
# dropout
|
825 |
+
hidden_states = attn.to_out[1](hidden_states)
|
826 |
+
|
827 |
+
if input_ndim == 4:
|
828 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
829 |
+
|
830 |
+
if attn.residual_connection:
|
831 |
+
hidden_states = hidden_states + residual
|
832 |
+
|
833 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
834 |
+
|
835 |
+
return hidden_states
|
836 |
+
|
837 |
+
|
838 |
+
|
839 |
+
class XFormersJointAttnProcessor:
|
840 |
+
r"""
|
841 |
+
Default processor for performing attention-related computations.
|
842 |
+
"""
|
843 |
+
|
844 |
+
def __call__(
|
845 |
+
self,
|
846 |
+
attn: Attention,
|
847 |
+
hidden_states,
|
848 |
+
encoder_hidden_states=None,
|
849 |
+
attention_mask=None,
|
850 |
+
temb=None,
|
851 |
+
num_tasks=2
|
852 |
+
):
|
853 |
+
|
854 |
+
residual = hidden_states
|
855 |
+
|
856 |
+
if attn.spatial_norm is not None:
|
857 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
858 |
+
|
859 |
+
input_ndim = hidden_states.ndim
|
860 |
+
|
861 |
+
if input_ndim == 4:
|
862 |
+
batch_size, channel, height, width = hidden_states.shape
|
863 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
864 |
+
|
865 |
+
batch_size, sequence_length, _ = (
|
866 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
867 |
+
)
|
868 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
869 |
+
|
870 |
+
# from yuancheng; here attention_mask is None
|
871 |
+
if attention_mask is not None:
|
872 |
+
# expand our mask's singleton query_tokens dimension:
|
873 |
+
# [batch*heads, 1, key_tokens] ->
|
874 |
+
# [batch*heads, query_tokens, key_tokens]
|
875 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
876 |
+
# [batch*heads, query_tokens, key_tokens]
|
877 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
878 |
+
_, query_tokens, _ = hidden_states.shape
|
879 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
880 |
+
|
881 |
+
if attn.group_norm is not None:
|
882 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
883 |
+
|
884 |
+
query = attn.to_q(hidden_states)
|
885 |
+
|
886 |
+
if encoder_hidden_states is None:
|
887 |
+
encoder_hidden_states = hidden_states
|
888 |
+
elif attn.norm_cross:
|
889 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
890 |
+
|
891 |
+
key = attn.to_k(encoder_hidden_states)
|
892 |
+
value = attn.to_v(encoder_hidden_states)
|
893 |
+
|
894 |
+
assert num_tasks == 2 # only support two tasks now
|
895 |
+
|
896 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
897 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
898 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
899 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
900 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
901 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
902 |
+
|
903 |
+
|
904 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
905 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
906 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
907 |
+
|
908 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
909 |
+
# for flash attention implementation
|
910 |
+
# with torch.backends.cuda.sdp_kernel(enable_math=False):
|
911 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, attn_bias=attention_mask)
|
912 |
+
# hidden_states = attn.batch_to_head_dim(hidden_states)
|
913 |
+
|
914 |
+
# linear proj
|
915 |
+
hidden_states = attn.to_out[0](hidden_states)
|
916 |
+
# dropout
|
917 |
+
hidden_states = attn.to_out[1](hidden_states)
|
918 |
+
|
919 |
+
if input_ndim == 4:
|
920 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
921 |
+
|
922 |
+
if attn.residual_connection:
|
923 |
+
hidden_states = hidden_states + residual
|
924 |
+
|
925 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
926 |
+
|
927 |
+
return hidden_states
|
928 |
+
|
929 |
+
|
930 |
+
# class JointAttnProcessor:
|
931 |
+
# r"""
|
932 |
+
# Default processor for performing attention-related computations.
|
933 |
+
# """
|
934 |
+
#
|
935 |
+
# def __call__(
|
936 |
+
# self,
|
937 |
+
# attn: Attention,
|
938 |
+
# hidden_states,
|
939 |
+
# encoder_hidden_states=None,
|
940 |
+
# attention_mask=None,
|
941 |
+
# temb=None,
|
942 |
+
# num_tasks=2
|
943 |
+
# ):
|
944 |
+
#
|
945 |
+
# residual = hidden_states
|
946 |
+
#
|
947 |
+
# if attn.spatial_norm is not None:
|
948 |
+
# hidden_states = attn.spatial_norm(hidden_states, temb)
|
949 |
+
#
|
950 |
+
# input_ndim = hidden_states.ndim
|
951 |
+
#
|
952 |
+
# if input_ndim == 4:
|
953 |
+
# batch_size, channel, height, width = hidden_states.shape
|
954 |
+
# hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
955 |
+
#
|
956 |
+
# batch_size, sequence_length, input_dim = (
|
957 |
+
# hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
958 |
+
# )
|
959 |
+
# attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
960 |
+
#
|
961 |
+
#
|
962 |
+
# if attn.group_norm is not None:
|
963 |
+
# hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
964 |
+
#
|
965 |
+
# query = attn.to_q(hidden_states)
|
966 |
+
#
|
967 |
+
# if encoder_hidden_states is None:
|
968 |
+
# encoder_hidden_states = hidden_states
|
969 |
+
# elif attn.norm_cross:
|
970 |
+
# encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
971 |
+
#
|
972 |
+
# key = attn.to_k(encoder_hidden_states)
|
973 |
+
# value = attn.to_v(encoder_hidden_states)
|
974 |
+
#
|
975 |
+
# assert num_tasks == 2 # only support two tasks now
|
976 |
+
#
|
977 |
+
# key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
978 |
+
# value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
979 |
+
# key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
980 |
+
# value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
981 |
+
# key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
982 |
+
# value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
983 |
+
#
|
984 |
+
#
|
985 |
+
# # batch, n_heads, n_tokens, channel
|
986 |
+
# query = attn.head_to_batch_dim(query, out_dim=4).contiguous()
|
987 |
+
# key = attn.head_to_batch_dim(key, out_dim=4).contiguous()
|
988 |
+
# value = attn.head_to_batch_dim(value, out_dim=4).contiguous()
|
989 |
+
#
|
990 |
+
# # attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
991 |
+
# # hidden_states = torch.bmm(attention_probs, value)
|
992 |
+
# # hidden_states = attn.batch_to_head_dim(hidden_states)
|
993 |
+
#
|
994 |
+
# # for flash attention implementation
|
995 |
+
# with torch.backends.cuda.sdp_kernel(
|
996 |
+
# enable_flash=True,
|
997 |
+
# enable_math=False,
|
998 |
+
# enable_mem_efficient=True
|
999 |
+
# ):
|
1000 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value)
|
1001 |
+
#
|
1002 |
+
# hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, sequence_length, input_dim)
|
1003 |
+
#
|
1004 |
+
# # linear proj
|
1005 |
+
# hidden_states = attn.to_out[0](hidden_states)
|
1006 |
+
# # dropout
|
1007 |
+
# hidden_states = attn.to_out[1](hidden_states)
|
1008 |
+
#
|
1009 |
+
# if input_ndim == 4:
|
1010 |
+
# hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1011 |
+
#
|
1012 |
+
# if attn.residual_connection:
|
1013 |
+
# hidden_states = hidden_states + residual
|
1014 |
+
#
|
1015 |
+
# hidden_states = hidden_states / attn.rescale_output_factor
|
1016 |
+
#
|
1017 |
+
# return hidden_states
|
1018 |
+
|
1019 |
+
class JointAttnProcessor:
|
1020 |
+
r"""
|
1021 |
+
Default processor for performing attention-related computations.
|
1022 |
+
"""
|
1023 |
+
|
1024 |
+
def __call__(
|
1025 |
+
self,
|
1026 |
+
attn: Attention,
|
1027 |
+
hidden_states,
|
1028 |
+
encoder_hidden_states=None,
|
1029 |
+
attention_mask=None,
|
1030 |
+
temb=None,
|
1031 |
+
num_tasks=2
|
1032 |
+
):
|
1033 |
+
|
1034 |
+
residual = hidden_states
|
1035 |
+
|
1036 |
+
if attn.spatial_norm is not None:
|
1037 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1038 |
+
|
1039 |
+
input_ndim = hidden_states.ndim
|
1040 |
+
|
1041 |
+
if input_ndim == 4:
|
1042 |
+
batch_size, channel, height, width = hidden_states.shape
|
1043 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1044 |
+
|
1045 |
+
batch_size, sequence_length, _ = (
|
1046 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1047 |
+
)
|
1048 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1049 |
+
|
1050 |
+
if attn.group_norm is not None:
|
1051 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1052 |
+
|
1053 |
+
query = attn.to_q(hidden_states)
|
1054 |
+
|
1055 |
+
if encoder_hidden_states is None:
|
1056 |
+
encoder_hidden_states = hidden_states
|
1057 |
+
elif attn.norm_cross:
|
1058 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1059 |
+
|
1060 |
+
key = attn.to_k(encoder_hidden_states)
|
1061 |
+
value = attn.to_v(encoder_hidden_states)
|
1062 |
+
|
1063 |
+
assert num_tasks == 2 # only support two tasks now
|
1064 |
+
|
1065 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
1066 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
1067 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
1068 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
1069 |
+
key = torch.cat([key] * 2, dim=0) # ( 2 b t) 2d c
|
1070 |
+
value = torch.cat([value] * 2, dim=0) # (2 b t) 2d c
|
1071 |
+
|
1072 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1073 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1074 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1075 |
+
|
1076 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
1077 |
+
hidden_states = torch.bmm(attention_probs, value)
|
1078 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1079 |
+
|
1080 |
+
# linear proj
|
1081 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1082 |
+
# dropout
|
1083 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1084 |
+
|
1085 |
+
if input_ndim == 4:
|
1086 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1087 |
+
|
1088 |
+
if attn.residual_connection:
|
1089 |
+
hidden_states = hidden_states + residual
|
1090 |
+
|
1091 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1092 |
+
|
1093 |
+
return hidden_states
|
mv_diffusion_30/models/unet_mv2d_blocks.py
ADDED
@@ -0,0 +1,922 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional, Tuple
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import is_torch_version, logging
|
22 |
+
# from diffusers.models.normalization import AdaGroupNorm
|
23 |
+
# from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
24 |
+
# from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel
|
25 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
26 |
+
from mv_diffusion_30.models.transformer_mv2d import TransformerMV2DModel
|
27 |
+
|
28 |
+
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
|
29 |
+
from diffusers.models.unets.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
def get_down_block(
|
36 |
+
down_block_type,
|
37 |
+
num_layers,
|
38 |
+
in_channels,
|
39 |
+
out_channels,
|
40 |
+
temb_channels,
|
41 |
+
add_downsample,
|
42 |
+
resnet_eps,
|
43 |
+
resnet_act_fn,
|
44 |
+
transformer_layers_per_block=1,
|
45 |
+
num_attention_heads=None,
|
46 |
+
resnet_groups=None,
|
47 |
+
cross_attention_dim=None,
|
48 |
+
downsample_padding=None,
|
49 |
+
dual_cross_attention=False,
|
50 |
+
use_linear_projection=False,
|
51 |
+
only_cross_attention=False,
|
52 |
+
upcast_attention=False,
|
53 |
+
resnet_time_scale_shift="default",
|
54 |
+
resnet_skip_time_act=False,
|
55 |
+
resnet_out_scale_factor=1.0,
|
56 |
+
cross_attention_norm=None,
|
57 |
+
attention_head_dim=None,
|
58 |
+
downsample_type=None,
|
59 |
+
num_views=1,
|
60 |
+
cd_attention_last: bool = False,
|
61 |
+
cd_attention_mid: bool = False,
|
62 |
+
multiview_attention: bool = True,
|
63 |
+
sparse_mv_attention: bool = False,
|
64 |
+
mvcd_attention: bool=False
|
65 |
+
):
|
66 |
+
# If attn head dim is not defined, we default it to the number of heads
|
67 |
+
if attention_head_dim is None:
|
68 |
+
logger.warn(
|
69 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
70 |
+
)
|
71 |
+
attention_head_dim = num_attention_heads
|
72 |
+
|
73 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
74 |
+
if down_block_type == "DownBlock2D":
|
75 |
+
return DownBlock2D(
|
76 |
+
num_layers=num_layers,
|
77 |
+
in_channels=in_channels,
|
78 |
+
out_channels=out_channels,
|
79 |
+
temb_channels=temb_channels,
|
80 |
+
add_downsample=add_downsample,
|
81 |
+
resnet_eps=resnet_eps,
|
82 |
+
resnet_act_fn=resnet_act_fn,
|
83 |
+
resnet_groups=resnet_groups,
|
84 |
+
downsample_padding=downsample_padding,
|
85 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
86 |
+
)
|
87 |
+
elif down_block_type == "ResnetDownsampleBlock2D":
|
88 |
+
return ResnetDownsampleBlock2D(
|
89 |
+
num_layers=num_layers,
|
90 |
+
in_channels=in_channels,
|
91 |
+
out_channels=out_channels,
|
92 |
+
temb_channels=temb_channels,
|
93 |
+
add_downsample=add_downsample,
|
94 |
+
resnet_eps=resnet_eps,
|
95 |
+
resnet_act_fn=resnet_act_fn,
|
96 |
+
resnet_groups=resnet_groups,
|
97 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
98 |
+
skip_time_act=resnet_skip_time_act,
|
99 |
+
output_scale_factor=resnet_out_scale_factor,
|
100 |
+
)
|
101 |
+
elif down_block_type == "AttnDownBlock2D":
|
102 |
+
if add_downsample is False:
|
103 |
+
downsample_type = None
|
104 |
+
else:
|
105 |
+
downsample_type = downsample_type or "conv" # default to 'conv'
|
106 |
+
return AttnDownBlock2D(
|
107 |
+
num_layers=num_layers,
|
108 |
+
in_channels=in_channels,
|
109 |
+
out_channels=out_channels,
|
110 |
+
temb_channels=temb_channels,
|
111 |
+
resnet_eps=resnet_eps,
|
112 |
+
resnet_act_fn=resnet_act_fn,
|
113 |
+
resnet_groups=resnet_groups,
|
114 |
+
downsample_padding=downsample_padding,
|
115 |
+
attention_head_dim=attention_head_dim,
|
116 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
117 |
+
downsample_type=downsample_type,
|
118 |
+
)
|
119 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
120 |
+
if cross_attention_dim is None:
|
121 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
122 |
+
return CrossAttnDownBlock2D(
|
123 |
+
num_layers=num_layers,
|
124 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
125 |
+
in_channels=in_channels,
|
126 |
+
out_channels=out_channels,
|
127 |
+
temb_channels=temb_channels,
|
128 |
+
add_downsample=add_downsample,
|
129 |
+
resnet_eps=resnet_eps,
|
130 |
+
resnet_act_fn=resnet_act_fn,
|
131 |
+
resnet_groups=resnet_groups,
|
132 |
+
downsample_padding=downsample_padding,
|
133 |
+
cross_attention_dim=cross_attention_dim,
|
134 |
+
num_attention_heads=num_attention_heads,
|
135 |
+
dual_cross_attention=dual_cross_attention,
|
136 |
+
use_linear_projection=use_linear_projection,
|
137 |
+
only_cross_attention=only_cross_attention,
|
138 |
+
upcast_attention=upcast_attention,
|
139 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
140 |
+
)
|
141 |
+
# custom MV2D attention block
|
142 |
+
elif down_block_type == "CrossAttnDownBlockMV2D":
|
143 |
+
if cross_attention_dim is None:
|
144 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
|
145 |
+
return CrossAttnDownBlockMV2D(
|
146 |
+
num_layers=num_layers,
|
147 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
148 |
+
in_channels=in_channels,
|
149 |
+
out_channels=out_channels,
|
150 |
+
temb_channels=temb_channels,
|
151 |
+
add_downsample=add_downsample,
|
152 |
+
resnet_eps=resnet_eps,
|
153 |
+
resnet_act_fn=resnet_act_fn,
|
154 |
+
resnet_groups=resnet_groups,
|
155 |
+
downsample_padding=downsample_padding,
|
156 |
+
cross_attention_dim=cross_attention_dim,
|
157 |
+
num_attention_heads=num_attention_heads,
|
158 |
+
dual_cross_attention=dual_cross_attention,
|
159 |
+
use_linear_projection=use_linear_projection,
|
160 |
+
only_cross_attention=only_cross_attention,
|
161 |
+
upcast_attention=upcast_attention,
|
162 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
163 |
+
num_views=num_views,
|
164 |
+
cd_attention_last=cd_attention_last,
|
165 |
+
cd_attention_mid=cd_attention_mid,
|
166 |
+
multiview_attention=multiview_attention,
|
167 |
+
sparse_mv_attention=sparse_mv_attention,
|
168 |
+
mvcd_attention=mvcd_attention
|
169 |
+
)
|
170 |
+
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
171 |
+
if cross_attention_dim is None:
|
172 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
173 |
+
return SimpleCrossAttnDownBlock2D(
|
174 |
+
num_layers=num_layers,
|
175 |
+
in_channels=in_channels,
|
176 |
+
out_channels=out_channels,
|
177 |
+
temb_channels=temb_channels,
|
178 |
+
add_downsample=add_downsample,
|
179 |
+
resnet_eps=resnet_eps,
|
180 |
+
resnet_act_fn=resnet_act_fn,
|
181 |
+
resnet_groups=resnet_groups,
|
182 |
+
cross_attention_dim=cross_attention_dim,
|
183 |
+
attention_head_dim=attention_head_dim,
|
184 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
185 |
+
skip_time_act=resnet_skip_time_act,
|
186 |
+
output_scale_factor=resnet_out_scale_factor,
|
187 |
+
only_cross_attention=only_cross_attention,
|
188 |
+
cross_attention_norm=cross_attention_norm,
|
189 |
+
)
|
190 |
+
elif down_block_type == "SkipDownBlock2D":
|
191 |
+
return SkipDownBlock2D(
|
192 |
+
num_layers=num_layers,
|
193 |
+
in_channels=in_channels,
|
194 |
+
out_channels=out_channels,
|
195 |
+
temb_channels=temb_channels,
|
196 |
+
add_downsample=add_downsample,
|
197 |
+
resnet_eps=resnet_eps,
|
198 |
+
resnet_act_fn=resnet_act_fn,
|
199 |
+
downsample_padding=downsample_padding,
|
200 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
201 |
+
)
|
202 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
203 |
+
return AttnSkipDownBlock2D(
|
204 |
+
num_layers=num_layers,
|
205 |
+
in_channels=in_channels,
|
206 |
+
out_channels=out_channels,
|
207 |
+
temb_channels=temb_channels,
|
208 |
+
add_downsample=add_downsample,
|
209 |
+
resnet_eps=resnet_eps,
|
210 |
+
resnet_act_fn=resnet_act_fn,
|
211 |
+
attention_head_dim=attention_head_dim,
|
212 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
213 |
+
)
|
214 |
+
elif down_block_type == "DownEncoderBlock2D":
|
215 |
+
return DownEncoderBlock2D(
|
216 |
+
num_layers=num_layers,
|
217 |
+
in_channels=in_channels,
|
218 |
+
out_channels=out_channels,
|
219 |
+
add_downsample=add_downsample,
|
220 |
+
resnet_eps=resnet_eps,
|
221 |
+
resnet_act_fn=resnet_act_fn,
|
222 |
+
resnet_groups=resnet_groups,
|
223 |
+
downsample_padding=downsample_padding,
|
224 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
225 |
+
)
|
226 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
227 |
+
return AttnDownEncoderBlock2D(
|
228 |
+
num_layers=num_layers,
|
229 |
+
in_channels=in_channels,
|
230 |
+
out_channels=out_channels,
|
231 |
+
add_downsample=add_downsample,
|
232 |
+
resnet_eps=resnet_eps,
|
233 |
+
resnet_act_fn=resnet_act_fn,
|
234 |
+
resnet_groups=resnet_groups,
|
235 |
+
downsample_padding=downsample_padding,
|
236 |
+
attention_head_dim=attention_head_dim,
|
237 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
238 |
+
)
|
239 |
+
elif down_block_type == "KDownBlock2D":
|
240 |
+
return KDownBlock2D(
|
241 |
+
num_layers=num_layers,
|
242 |
+
in_channels=in_channels,
|
243 |
+
out_channels=out_channels,
|
244 |
+
temb_channels=temb_channels,
|
245 |
+
add_downsample=add_downsample,
|
246 |
+
resnet_eps=resnet_eps,
|
247 |
+
resnet_act_fn=resnet_act_fn,
|
248 |
+
)
|
249 |
+
elif down_block_type == "KCrossAttnDownBlock2D":
|
250 |
+
return KCrossAttnDownBlock2D(
|
251 |
+
num_layers=num_layers,
|
252 |
+
in_channels=in_channels,
|
253 |
+
out_channels=out_channels,
|
254 |
+
temb_channels=temb_channels,
|
255 |
+
add_downsample=add_downsample,
|
256 |
+
resnet_eps=resnet_eps,
|
257 |
+
resnet_act_fn=resnet_act_fn,
|
258 |
+
cross_attention_dim=cross_attention_dim,
|
259 |
+
attention_head_dim=attention_head_dim,
|
260 |
+
add_self_attention=True if not add_downsample else False,
|
261 |
+
)
|
262 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
263 |
+
|
264 |
+
|
265 |
+
def get_up_block(
|
266 |
+
up_block_type,
|
267 |
+
num_layers,
|
268 |
+
in_channels,
|
269 |
+
out_channels,
|
270 |
+
prev_output_channel,
|
271 |
+
temb_channels,
|
272 |
+
add_upsample,
|
273 |
+
resnet_eps,
|
274 |
+
resnet_act_fn,
|
275 |
+
transformer_layers_per_block=1,
|
276 |
+
num_attention_heads=None,
|
277 |
+
resnet_groups=None,
|
278 |
+
cross_attention_dim=None,
|
279 |
+
dual_cross_attention=False,
|
280 |
+
use_linear_projection=False,
|
281 |
+
only_cross_attention=False,
|
282 |
+
upcast_attention=False,
|
283 |
+
resnet_time_scale_shift="default",
|
284 |
+
resnet_skip_time_act=False,
|
285 |
+
resnet_out_scale_factor=1.0,
|
286 |
+
cross_attention_norm=None,
|
287 |
+
attention_head_dim=None,
|
288 |
+
upsample_type=None,
|
289 |
+
num_views=1,
|
290 |
+
cd_attention_last: bool = False,
|
291 |
+
cd_attention_mid: bool = False,
|
292 |
+
multiview_attention: bool = True,
|
293 |
+
sparse_mv_attention: bool = False,
|
294 |
+
mvcd_attention: bool=False
|
295 |
+
):
|
296 |
+
# If attn head dim is not defined, we default it to the number of heads
|
297 |
+
if attention_head_dim is None:
|
298 |
+
logger.warn(
|
299 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
300 |
+
)
|
301 |
+
attention_head_dim = num_attention_heads
|
302 |
+
|
303 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
304 |
+
if up_block_type == "UpBlock2D":
|
305 |
+
return UpBlock2D(
|
306 |
+
num_layers=num_layers,
|
307 |
+
in_channels=in_channels,
|
308 |
+
out_channels=out_channels,
|
309 |
+
prev_output_channel=prev_output_channel,
|
310 |
+
temb_channels=temb_channels,
|
311 |
+
add_upsample=add_upsample,
|
312 |
+
resnet_eps=resnet_eps,
|
313 |
+
resnet_act_fn=resnet_act_fn,
|
314 |
+
resnet_groups=resnet_groups,
|
315 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
316 |
+
)
|
317 |
+
elif up_block_type == "ResnetUpsampleBlock2D":
|
318 |
+
return ResnetUpsampleBlock2D(
|
319 |
+
num_layers=num_layers,
|
320 |
+
in_channels=in_channels,
|
321 |
+
out_channels=out_channels,
|
322 |
+
prev_output_channel=prev_output_channel,
|
323 |
+
temb_channels=temb_channels,
|
324 |
+
add_upsample=add_upsample,
|
325 |
+
resnet_eps=resnet_eps,
|
326 |
+
resnet_act_fn=resnet_act_fn,
|
327 |
+
resnet_groups=resnet_groups,
|
328 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
329 |
+
skip_time_act=resnet_skip_time_act,
|
330 |
+
output_scale_factor=resnet_out_scale_factor,
|
331 |
+
)
|
332 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
333 |
+
if cross_attention_dim is None:
|
334 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
335 |
+
return CrossAttnUpBlock2D(
|
336 |
+
num_layers=num_layers,
|
337 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
338 |
+
in_channels=in_channels,
|
339 |
+
out_channels=out_channels,
|
340 |
+
prev_output_channel=prev_output_channel,
|
341 |
+
temb_channels=temb_channels,
|
342 |
+
add_upsample=add_upsample,
|
343 |
+
resnet_eps=resnet_eps,
|
344 |
+
resnet_act_fn=resnet_act_fn,
|
345 |
+
resnet_groups=resnet_groups,
|
346 |
+
cross_attention_dim=cross_attention_dim,
|
347 |
+
num_attention_heads=num_attention_heads,
|
348 |
+
dual_cross_attention=dual_cross_attention,
|
349 |
+
use_linear_projection=use_linear_projection,
|
350 |
+
only_cross_attention=only_cross_attention,
|
351 |
+
upcast_attention=upcast_attention,
|
352 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
353 |
+
)
|
354 |
+
# custom MV2D attention block
|
355 |
+
elif up_block_type == "CrossAttnUpBlockMV2D":
|
356 |
+
if cross_attention_dim is None:
|
357 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
|
358 |
+
return CrossAttnUpBlockMV2D(
|
359 |
+
num_layers=num_layers,
|
360 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
361 |
+
in_channels=in_channels,
|
362 |
+
out_channels=out_channels,
|
363 |
+
prev_output_channel=prev_output_channel,
|
364 |
+
temb_channels=temb_channels,
|
365 |
+
add_upsample=add_upsample,
|
366 |
+
resnet_eps=resnet_eps,
|
367 |
+
resnet_act_fn=resnet_act_fn,
|
368 |
+
resnet_groups=resnet_groups,
|
369 |
+
cross_attention_dim=cross_attention_dim,
|
370 |
+
num_attention_heads=num_attention_heads,
|
371 |
+
dual_cross_attention=dual_cross_attention,
|
372 |
+
use_linear_projection=use_linear_projection,
|
373 |
+
only_cross_attention=only_cross_attention,
|
374 |
+
upcast_attention=upcast_attention,
|
375 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
376 |
+
num_views=num_views,
|
377 |
+
cd_attention_last=cd_attention_last,
|
378 |
+
cd_attention_mid=cd_attention_mid,
|
379 |
+
multiview_attention=multiview_attention,
|
380 |
+
sparse_mv_attention=sparse_mv_attention,
|
381 |
+
mvcd_attention=mvcd_attention
|
382 |
+
)
|
383 |
+
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
384 |
+
if cross_attention_dim is None:
|
385 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
386 |
+
return SimpleCrossAttnUpBlock2D(
|
387 |
+
num_layers=num_layers,
|
388 |
+
in_channels=in_channels,
|
389 |
+
out_channels=out_channels,
|
390 |
+
prev_output_channel=prev_output_channel,
|
391 |
+
temb_channels=temb_channels,
|
392 |
+
add_upsample=add_upsample,
|
393 |
+
resnet_eps=resnet_eps,
|
394 |
+
resnet_act_fn=resnet_act_fn,
|
395 |
+
resnet_groups=resnet_groups,
|
396 |
+
cross_attention_dim=cross_attention_dim,
|
397 |
+
attention_head_dim=attention_head_dim,
|
398 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
399 |
+
skip_time_act=resnet_skip_time_act,
|
400 |
+
output_scale_factor=resnet_out_scale_factor,
|
401 |
+
only_cross_attention=only_cross_attention,
|
402 |
+
cross_attention_norm=cross_attention_norm,
|
403 |
+
)
|
404 |
+
elif up_block_type == "AttnUpBlock2D":
|
405 |
+
if add_upsample is False:
|
406 |
+
upsample_type = None
|
407 |
+
else:
|
408 |
+
upsample_type = upsample_type or "conv" # default to 'conv'
|
409 |
+
|
410 |
+
return AttnUpBlock2D(
|
411 |
+
num_layers=num_layers,
|
412 |
+
in_channels=in_channels,
|
413 |
+
out_channels=out_channels,
|
414 |
+
prev_output_channel=prev_output_channel,
|
415 |
+
temb_channels=temb_channels,
|
416 |
+
resnet_eps=resnet_eps,
|
417 |
+
resnet_act_fn=resnet_act_fn,
|
418 |
+
resnet_groups=resnet_groups,
|
419 |
+
attention_head_dim=attention_head_dim,
|
420 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
421 |
+
upsample_type=upsample_type,
|
422 |
+
)
|
423 |
+
elif up_block_type == "SkipUpBlock2D":
|
424 |
+
return SkipUpBlock2D(
|
425 |
+
num_layers=num_layers,
|
426 |
+
in_channels=in_channels,
|
427 |
+
out_channels=out_channels,
|
428 |
+
prev_output_channel=prev_output_channel,
|
429 |
+
temb_channels=temb_channels,
|
430 |
+
add_upsample=add_upsample,
|
431 |
+
resnet_eps=resnet_eps,
|
432 |
+
resnet_act_fn=resnet_act_fn,
|
433 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
434 |
+
)
|
435 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
436 |
+
return AttnSkipUpBlock2D(
|
437 |
+
num_layers=num_layers,
|
438 |
+
in_channels=in_channels,
|
439 |
+
out_channels=out_channels,
|
440 |
+
prev_output_channel=prev_output_channel,
|
441 |
+
temb_channels=temb_channels,
|
442 |
+
add_upsample=add_upsample,
|
443 |
+
resnet_eps=resnet_eps,
|
444 |
+
resnet_act_fn=resnet_act_fn,
|
445 |
+
attention_head_dim=attention_head_dim,
|
446 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
447 |
+
)
|
448 |
+
elif up_block_type == "UpDecoderBlock2D":
|
449 |
+
return UpDecoderBlock2D(
|
450 |
+
num_layers=num_layers,
|
451 |
+
in_channels=in_channels,
|
452 |
+
out_channels=out_channels,
|
453 |
+
add_upsample=add_upsample,
|
454 |
+
resnet_eps=resnet_eps,
|
455 |
+
resnet_act_fn=resnet_act_fn,
|
456 |
+
resnet_groups=resnet_groups,
|
457 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
458 |
+
temb_channels=temb_channels,
|
459 |
+
)
|
460 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
461 |
+
return AttnUpDecoderBlock2D(
|
462 |
+
num_layers=num_layers,
|
463 |
+
in_channels=in_channels,
|
464 |
+
out_channels=out_channels,
|
465 |
+
add_upsample=add_upsample,
|
466 |
+
resnet_eps=resnet_eps,
|
467 |
+
resnet_act_fn=resnet_act_fn,
|
468 |
+
resnet_groups=resnet_groups,
|
469 |
+
attention_head_dim=attention_head_dim,
|
470 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
471 |
+
temb_channels=temb_channels,
|
472 |
+
)
|
473 |
+
elif up_block_type == "KUpBlock2D":
|
474 |
+
return KUpBlock2D(
|
475 |
+
num_layers=num_layers,
|
476 |
+
in_channels=in_channels,
|
477 |
+
out_channels=out_channels,
|
478 |
+
temb_channels=temb_channels,
|
479 |
+
add_upsample=add_upsample,
|
480 |
+
resnet_eps=resnet_eps,
|
481 |
+
resnet_act_fn=resnet_act_fn,
|
482 |
+
)
|
483 |
+
elif up_block_type == "KCrossAttnUpBlock2D":
|
484 |
+
return KCrossAttnUpBlock2D(
|
485 |
+
num_layers=num_layers,
|
486 |
+
in_channels=in_channels,
|
487 |
+
out_channels=out_channels,
|
488 |
+
temb_channels=temb_channels,
|
489 |
+
add_upsample=add_upsample,
|
490 |
+
resnet_eps=resnet_eps,
|
491 |
+
resnet_act_fn=resnet_act_fn,
|
492 |
+
cross_attention_dim=cross_attention_dim,
|
493 |
+
attention_head_dim=attention_head_dim,
|
494 |
+
)
|
495 |
+
|
496 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
497 |
+
|
498 |
+
|
499 |
+
class UNetMidBlockMV2DCrossAttn(nn.Module):
|
500 |
+
def __init__(
|
501 |
+
self,
|
502 |
+
in_channels: int,
|
503 |
+
temb_channels: int,
|
504 |
+
dropout: float = 0.0,
|
505 |
+
num_layers: int = 1,
|
506 |
+
transformer_layers_per_block: int = 1,
|
507 |
+
resnet_eps: float = 1e-6,
|
508 |
+
resnet_time_scale_shift: str = "default",
|
509 |
+
resnet_act_fn: str = "swish",
|
510 |
+
resnet_groups: int = 32,
|
511 |
+
resnet_pre_norm: bool = True,
|
512 |
+
num_attention_heads=1,
|
513 |
+
output_scale_factor=1.0,
|
514 |
+
cross_attention_dim=1280,
|
515 |
+
dual_cross_attention=False,
|
516 |
+
use_linear_projection=False,
|
517 |
+
upcast_attention=False,
|
518 |
+
num_views: int = 1,
|
519 |
+
cd_attention_last: bool = False,
|
520 |
+
cd_attention_mid: bool = False,
|
521 |
+
multiview_attention: bool = True,
|
522 |
+
sparse_mv_attention: bool = False,
|
523 |
+
mvcd_attention: bool=False
|
524 |
+
):
|
525 |
+
super().__init__()
|
526 |
+
|
527 |
+
self.has_cross_attention = True
|
528 |
+
self.num_attention_heads = num_attention_heads
|
529 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
530 |
+
|
531 |
+
# there is always at least one resnet
|
532 |
+
resnets = [
|
533 |
+
ResnetBlock2D(
|
534 |
+
in_channels=in_channels,
|
535 |
+
out_channels=in_channels,
|
536 |
+
temb_channels=temb_channels,
|
537 |
+
eps=resnet_eps,
|
538 |
+
groups=resnet_groups,
|
539 |
+
dropout=dropout,
|
540 |
+
time_embedding_norm=resnet_time_scale_shift,
|
541 |
+
non_linearity=resnet_act_fn,
|
542 |
+
output_scale_factor=output_scale_factor,
|
543 |
+
pre_norm=resnet_pre_norm,
|
544 |
+
)
|
545 |
+
]
|
546 |
+
attentions = []
|
547 |
+
|
548 |
+
for _ in range(num_layers):
|
549 |
+
if not dual_cross_attention:
|
550 |
+
attentions.append(
|
551 |
+
TransformerMV2DModel(
|
552 |
+
num_attention_heads,
|
553 |
+
in_channels // num_attention_heads,
|
554 |
+
in_channels=in_channels,
|
555 |
+
num_layers=transformer_layers_per_block,
|
556 |
+
cross_attention_dim=cross_attention_dim,
|
557 |
+
norm_num_groups=resnet_groups,
|
558 |
+
use_linear_projection=use_linear_projection,
|
559 |
+
upcast_attention=upcast_attention,
|
560 |
+
num_views=num_views,
|
561 |
+
cd_attention_last=cd_attention_last,
|
562 |
+
cd_attention_mid=cd_attention_mid,
|
563 |
+
multiview_attention=multiview_attention,
|
564 |
+
sparse_mv_attention=sparse_mv_attention,
|
565 |
+
mvcd_attention=mvcd_attention
|
566 |
+
)
|
567 |
+
)
|
568 |
+
else:
|
569 |
+
raise NotImplementedError
|
570 |
+
resnets.append(
|
571 |
+
ResnetBlock2D(
|
572 |
+
in_channels=in_channels,
|
573 |
+
out_channels=in_channels,
|
574 |
+
temb_channels=temb_channels,
|
575 |
+
eps=resnet_eps,
|
576 |
+
groups=resnet_groups,
|
577 |
+
dropout=dropout,
|
578 |
+
time_embedding_norm=resnet_time_scale_shift,
|
579 |
+
non_linearity=resnet_act_fn,
|
580 |
+
output_scale_factor=output_scale_factor,
|
581 |
+
pre_norm=resnet_pre_norm,
|
582 |
+
)
|
583 |
+
)
|
584 |
+
|
585 |
+
self.attentions = nn.ModuleList(attentions)
|
586 |
+
self.resnets = nn.ModuleList(resnets)
|
587 |
+
|
588 |
+
def forward(
|
589 |
+
self,
|
590 |
+
hidden_states: torch.FloatTensor,
|
591 |
+
temb: Optional[torch.FloatTensor] = None,
|
592 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
593 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
594 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
595 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
596 |
+
) -> torch.FloatTensor:
|
597 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
598 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
599 |
+
hidden_states = attn(
|
600 |
+
hidden_states,
|
601 |
+
encoder_hidden_states=encoder_hidden_states,
|
602 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
603 |
+
attention_mask=attention_mask,
|
604 |
+
encoder_attention_mask=encoder_attention_mask,
|
605 |
+
return_dict=False,
|
606 |
+
)[0]
|
607 |
+
hidden_states = resnet(hidden_states, temb)
|
608 |
+
|
609 |
+
return hidden_states
|
610 |
+
|
611 |
+
|
612 |
+
class CrossAttnUpBlockMV2D(nn.Module):
|
613 |
+
def __init__(
|
614 |
+
self,
|
615 |
+
in_channels: int,
|
616 |
+
out_channels: int,
|
617 |
+
prev_output_channel: int,
|
618 |
+
temb_channels: int,
|
619 |
+
dropout: float = 0.0,
|
620 |
+
num_layers: int = 1,
|
621 |
+
transformer_layers_per_block: int = 1,
|
622 |
+
resnet_eps: float = 1e-6,
|
623 |
+
resnet_time_scale_shift: str = "default",
|
624 |
+
resnet_act_fn: str = "swish",
|
625 |
+
resnet_groups: int = 32,
|
626 |
+
resnet_pre_norm: bool = True,
|
627 |
+
num_attention_heads=1,
|
628 |
+
cross_attention_dim=1280,
|
629 |
+
output_scale_factor=1.0,
|
630 |
+
add_upsample=True,
|
631 |
+
dual_cross_attention=False,
|
632 |
+
use_linear_projection=False,
|
633 |
+
only_cross_attention=False,
|
634 |
+
upcast_attention=False,
|
635 |
+
num_views: int = 1,
|
636 |
+
cd_attention_last: bool = False,
|
637 |
+
cd_attention_mid: bool = False,
|
638 |
+
multiview_attention: bool = True,
|
639 |
+
sparse_mv_attention: bool = False,
|
640 |
+
mvcd_attention: bool=False
|
641 |
+
):
|
642 |
+
super().__init__()
|
643 |
+
resnets = []
|
644 |
+
attentions = []
|
645 |
+
|
646 |
+
self.has_cross_attention = True
|
647 |
+
self.num_attention_heads = num_attention_heads
|
648 |
+
|
649 |
+
for i in range(num_layers):
|
650 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
651 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
652 |
+
|
653 |
+
resnets.append(
|
654 |
+
ResnetBlock2D(
|
655 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
656 |
+
out_channels=out_channels,
|
657 |
+
temb_channels=temb_channels,
|
658 |
+
eps=resnet_eps,
|
659 |
+
groups=resnet_groups,
|
660 |
+
dropout=dropout,
|
661 |
+
time_embedding_norm=resnet_time_scale_shift,
|
662 |
+
non_linearity=resnet_act_fn,
|
663 |
+
output_scale_factor=output_scale_factor,
|
664 |
+
pre_norm=resnet_pre_norm,
|
665 |
+
)
|
666 |
+
)
|
667 |
+
if not dual_cross_attention:
|
668 |
+
attentions.append(
|
669 |
+
TransformerMV2DModel(
|
670 |
+
num_attention_heads,
|
671 |
+
out_channels // num_attention_heads,
|
672 |
+
in_channels=out_channels,
|
673 |
+
num_layers=transformer_layers_per_block,
|
674 |
+
cross_attention_dim=cross_attention_dim,
|
675 |
+
norm_num_groups=resnet_groups,
|
676 |
+
use_linear_projection=use_linear_projection,
|
677 |
+
only_cross_attention=only_cross_attention,
|
678 |
+
upcast_attention=upcast_attention,
|
679 |
+
num_views=num_views,
|
680 |
+
cd_attention_last=cd_attention_last,
|
681 |
+
cd_attention_mid=cd_attention_mid,
|
682 |
+
multiview_attention=multiview_attention,
|
683 |
+
sparse_mv_attention=sparse_mv_attention,
|
684 |
+
mvcd_attention=mvcd_attention
|
685 |
+
)
|
686 |
+
)
|
687 |
+
else:
|
688 |
+
raise NotImplementedError
|
689 |
+
self.attentions = nn.ModuleList(attentions)
|
690 |
+
self.resnets = nn.ModuleList(resnets)
|
691 |
+
|
692 |
+
if add_upsample:
|
693 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
694 |
+
else:
|
695 |
+
self.upsamplers = None
|
696 |
+
|
697 |
+
self.gradient_checkpointing = False
|
698 |
+
|
699 |
+
def forward(
|
700 |
+
self,
|
701 |
+
hidden_states: torch.FloatTensor,
|
702 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
703 |
+
temb: Optional[torch.FloatTensor] = None,
|
704 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
705 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
706 |
+
upsample_size: Optional[int] = None,
|
707 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
708 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
709 |
+
):
|
710 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
711 |
+
# pop res hidden states
|
712 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
713 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
714 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
715 |
+
|
716 |
+
if self.training and self.gradient_checkpointing:
|
717 |
+
|
718 |
+
def create_custom_forward(module, return_dict=None):
|
719 |
+
def custom_forward(*inputs):
|
720 |
+
if return_dict is not None:
|
721 |
+
return module(*inputs, return_dict=return_dict)
|
722 |
+
else:
|
723 |
+
return module(*inputs)
|
724 |
+
|
725 |
+
return custom_forward
|
726 |
+
|
727 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
728 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
729 |
+
create_custom_forward(resnet),
|
730 |
+
hidden_states,
|
731 |
+
temb,
|
732 |
+
**ckpt_kwargs,
|
733 |
+
)
|
734 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
735 |
+
create_custom_forward(attn, return_dict=False),
|
736 |
+
hidden_states,
|
737 |
+
encoder_hidden_states,
|
738 |
+
None, # timestep
|
739 |
+
None, # class_labels
|
740 |
+
cross_attention_kwargs,
|
741 |
+
attention_mask,
|
742 |
+
encoder_attention_mask,
|
743 |
+
**ckpt_kwargs,
|
744 |
+
)[0]
|
745 |
+
else:
|
746 |
+
hidden_states = resnet(hidden_states, temb)
|
747 |
+
hidden_states = attn(
|
748 |
+
hidden_states,
|
749 |
+
encoder_hidden_states=encoder_hidden_states,
|
750 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
751 |
+
attention_mask=attention_mask,
|
752 |
+
encoder_attention_mask=encoder_attention_mask,
|
753 |
+
return_dict=False,
|
754 |
+
)[0]
|
755 |
+
|
756 |
+
if self.upsamplers is not None:
|
757 |
+
for upsampler in self.upsamplers:
|
758 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
759 |
+
|
760 |
+
return hidden_states
|
761 |
+
|
762 |
+
|
763 |
+
class CrossAttnDownBlockMV2D(nn.Module):
|
764 |
+
def __init__(
|
765 |
+
self,
|
766 |
+
in_channels: int,
|
767 |
+
out_channels: int,
|
768 |
+
temb_channels: int,
|
769 |
+
dropout: float = 0.0,
|
770 |
+
num_layers: int = 1,
|
771 |
+
transformer_layers_per_block: int = 1,
|
772 |
+
resnet_eps: float = 1e-6,
|
773 |
+
resnet_time_scale_shift: str = "default",
|
774 |
+
resnet_act_fn: str = "swish",
|
775 |
+
resnet_groups: int = 32,
|
776 |
+
resnet_pre_norm: bool = True,
|
777 |
+
num_attention_heads=1,
|
778 |
+
cross_attention_dim=1280,
|
779 |
+
output_scale_factor=1.0,
|
780 |
+
downsample_padding=1,
|
781 |
+
add_downsample=True,
|
782 |
+
dual_cross_attention=False,
|
783 |
+
use_linear_projection=False,
|
784 |
+
only_cross_attention=False,
|
785 |
+
upcast_attention=False,
|
786 |
+
num_views: int = 1,
|
787 |
+
cd_attention_last: bool = False,
|
788 |
+
cd_attention_mid: bool = False,
|
789 |
+
multiview_attention: bool = True,
|
790 |
+
sparse_mv_attention: bool = False,
|
791 |
+
mvcd_attention: bool=False
|
792 |
+
):
|
793 |
+
super().__init__()
|
794 |
+
resnets = []
|
795 |
+
attentions = []
|
796 |
+
|
797 |
+
self.has_cross_attention = True
|
798 |
+
self.num_attention_heads = num_attention_heads
|
799 |
+
|
800 |
+
for i in range(num_layers):
|
801 |
+
in_channels = in_channels if i == 0 else out_channels
|
802 |
+
resnets.append(
|
803 |
+
ResnetBlock2D(
|
804 |
+
in_channels=in_channels,
|
805 |
+
out_channels=out_channels,
|
806 |
+
temb_channels=temb_channels,
|
807 |
+
eps=resnet_eps,
|
808 |
+
groups=resnet_groups,
|
809 |
+
dropout=dropout,
|
810 |
+
time_embedding_norm=resnet_time_scale_shift,
|
811 |
+
non_linearity=resnet_act_fn,
|
812 |
+
output_scale_factor=output_scale_factor,
|
813 |
+
pre_norm=resnet_pre_norm,
|
814 |
+
)
|
815 |
+
)
|
816 |
+
if not dual_cross_attention:
|
817 |
+
attentions.append(
|
818 |
+
TransformerMV2DModel(
|
819 |
+
num_attention_heads,
|
820 |
+
out_channels // num_attention_heads,
|
821 |
+
in_channels=out_channels,
|
822 |
+
num_layers=transformer_layers_per_block,
|
823 |
+
cross_attention_dim=cross_attention_dim,
|
824 |
+
norm_num_groups=resnet_groups,
|
825 |
+
use_linear_projection=use_linear_projection,
|
826 |
+
only_cross_attention=only_cross_attention,
|
827 |
+
upcast_attention=upcast_attention,
|
828 |
+
num_views=num_views,
|
829 |
+
cd_attention_last=cd_attention_last,
|
830 |
+
cd_attention_mid=cd_attention_mid,
|
831 |
+
multiview_attention=multiview_attention,
|
832 |
+
sparse_mv_attention=sparse_mv_attention,
|
833 |
+
mvcd_attention=mvcd_attention
|
834 |
+
)
|
835 |
+
)
|
836 |
+
else:
|
837 |
+
raise NotImplementedError
|
838 |
+
self.attentions = nn.ModuleList(attentions)
|
839 |
+
self.resnets = nn.ModuleList(resnets)
|
840 |
+
|
841 |
+
if add_downsample:
|
842 |
+
self.downsamplers = nn.ModuleList(
|
843 |
+
[
|
844 |
+
Downsample2D(
|
845 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
846 |
+
)
|
847 |
+
]
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
self.downsamplers = None
|
851 |
+
|
852 |
+
self.gradient_checkpointing = False
|
853 |
+
|
854 |
+
def forward(
|
855 |
+
self,
|
856 |
+
hidden_states: torch.FloatTensor,
|
857 |
+
temb: Optional[torch.FloatTensor] = None,
|
858 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
859 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
860 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
861 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
862 |
+
additional_residuals=None,
|
863 |
+
):
|
864 |
+
output_states = ()
|
865 |
+
|
866 |
+
blocks = list(zip(self.resnets, self.attentions))
|
867 |
+
|
868 |
+
for i, (resnet, attn) in enumerate(blocks):
|
869 |
+
if self.training and self.gradient_checkpointing:
|
870 |
+
|
871 |
+
def create_custom_forward(module, return_dict=None):
|
872 |
+
def custom_forward(*inputs):
|
873 |
+
if return_dict is not None:
|
874 |
+
return module(*inputs, return_dict=return_dict)
|
875 |
+
else:
|
876 |
+
return module(*inputs)
|
877 |
+
|
878 |
+
return custom_forward
|
879 |
+
|
880 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
881 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
882 |
+
create_custom_forward(resnet),
|
883 |
+
hidden_states,
|
884 |
+
temb,
|
885 |
+
**ckpt_kwargs,
|
886 |
+
)
|
887 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
888 |
+
create_custom_forward(attn, return_dict=False),
|
889 |
+
hidden_states,
|
890 |
+
encoder_hidden_states,
|
891 |
+
None, # timestep
|
892 |
+
None, # class_labels
|
893 |
+
cross_attention_kwargs,
|
894 |
+
attention_mask,
|
895 |
+
encoder_attention_mask,
|
896 |
+
**ckpt_kwargs,
|
897 |
+
)[0]
|
898 |
+
else:
|
899 |
+
hidden_states = resnet(hidden_states, temb)
|
900 |
+
hidden_states = attn(
|
901 |
+
hidden_states,
|
902 |
+
encoder_hidden_states=encoder_hidden_states,
|
903 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
904 |
+
attention_mask=attention_mask,
|
905 |
+
encoder_attention_mask=encoder_attention_mask,
|
906 |
+
return_dict=False,
|
907 |
+
)[0]
|
908 |
+
|
909 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
910 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
911 |
+
hidden_states = hidden_states + additional_residuals
|
912 |
+
|
913 |
+
output_states = output_states + (hidden_states,)
|
914 |
+
|
915 |
+
if self.downsamplers is not None:
|
916 |
+
for downsampler in self.downsamplers:
|
917 |
+
hidden_states = downsampler(hidden_states)
|
918 |
+
|
919 |
+
output_states = output_states + (hidden_states,)
|
920 |
+
|
921 |
+
return hidden_states, output_states
|
922 |
+
|
mv_diffusion_30/models/unet_mv2d_condition.py
ADDED
@@ -0,0 +1,1501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
24 |
+
from diffusers.utils import BaseOutput, logging
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
27 |
+
from diffusers.models.embeddings import (
|
28 |
+
GaussianFourierProjection,
|
29 |
+
ImageHintTimeEmbedding,
|
30 |
+
ImageProjection,
|
31 |
+
ImageTimeEmbedding,
|
32 |
+
TextImageProjection,
|
33 |
+
TextImageTimeEmbedding,
|
34 |
+
TextTimeEmbedding,
|
35 |
+
TimestepEmbedding,
|
36 |
+
Timesteps,
|
37 |
+
)
|
38 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
39 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
40 |
+
CrossAttnDownBlock2D,
|
41 |
+
CrossAttnUpBlock2D,
|
42 |
+
DownBlock2D,
|
43 |
+
UNetMidBlock2DCrossAttn,
|
44 |
+
UNetMidBlock2DSimpleCrossAttn,
|
45 |
+
UpBlock2D,
|
46 |
+
)
|
47 |
+
from diffusers.utils import (
|
48 |
+
CONFIG_NAME,
|
49 |
+
HF_MODULES_CACHE,
|
50 |
+
FLAX_WEIGHTS_NAME,
|
51 |
+
SAFETENSORS_WEIGHTS_NAME,
|
52 |
+
WEIGHTS_NAME,
|
53 |
+
_add_variant,
|
54 |
+
_get_model_file,
|
55 |
+
deprecate,
|
56 |
+
is_accelerate_available,
|
57 |
+
is_safetensors_available,
|
58 |
+
is_torch_version,
|
59 |
+
logging,
|
60 |
+
)
|
61 |
+
from diffusers import __version__
|
62 |
+
from mv_diffusion_30.models.unet_mv2d_blocks import (
|
63 |
+
CrossAttnDownBlockMV2D,
|
64 |
+
CrossAttnUpBlockMV2D,
|
65 |
+
UNetMidBlockMV2DCrossAttn,
|
66 |
+
get_down_block,
|
67 |
+
get_up_block,
|
68 |
+
)
|
69 |
+
from huggingface_hub.constants import HF_HUB_OFFLINE
|
70 |
+
|
71 |
+
|
72 |
+
hf_cache_home = os.path.expanduser(
|
73 |
+
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
|
74 |
+
)
|
75 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
76 |
+
|
77 |
+
|
78 |
+
DIFFUSERS_CACHE = HUGGINGFACE_HUB_CACHE
|
79 |
+
|
80 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
81 |
+
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class UNetMV2DConditionOutput(BaseOutput):
|
85 |
+
"""
|
86 |
+
The output of [`UNet2DConditionModel`].
|
87 |
+
|
88 |
+
Args:
|
89 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
90 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
91 |
+
"""
|
92 |
+
|
93 |
+
sample: torch.FloatTensor = None
|
94 |
+
|
95 |
+
|
96 |
+
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
97 |
+
r"""
|
98 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
99 |
+
shaped output.
|
100 |
+
|
101 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
102 |
+
for all models (such as downloading or saving).
|
103 |
+
|
104 |
+
Parameters:
|
105 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
106 |
+
Height and width of input/output sample.
|
107 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
108 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
109 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
110 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
111 |
+
Whether to flip the sin to cos in the time embedding.
|
112 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
113 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
114 |
+
The tuple of downsample blocks to use.
|
115 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
116 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
117 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
118 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
119 |
+
The tuple of upsample blocks to use.
|
120 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
121 |
+
Whether to include self-attention in the basic transformer blocks, see
|
122 |
+
[`~models.attention.BasicTransformerBlock`].
|
123 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
124 |
+
The tuple of output channels for each block.
|
125 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
126 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
127 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
128 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
129 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
130 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
131 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
132 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
133 |
+
The dimension of the cross attention features.
|
134 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
135 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
136 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
137 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
138 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
139 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
140 |
+
dimension to `cross_attention_dim`.
|
141 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
142 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
143 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
144 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
145 |
+
num_attention_heads (`int`, *optional*):
|
146 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
147 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
148 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
149 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
150 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
151 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
152 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
153 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
154 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
155 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
156 |
+
Dimension for the timestep embeddings.
|
157 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
158 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
159 |
+
class conditioning with `class_embed_type` equal to `None`.
|
160 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
161 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
162 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
163 |
+
An optional override for the dimension of the projected time embedding.
|
164 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
165 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
166 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
167 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
168 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
169 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
170 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
171 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
172 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
173 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
174 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
175 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
176 |
+
embeddings with the class embeddings.
|
177 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
178 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
179 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
180 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
181 |
+
otherwise.
|
182 |
+
"""
|
183 |
+
|
184 |
+
_supports_gradient_checkpointing = True
|
185 |
+
|
186 |
+
@register_to_config
|
187 |
+
def __init__(
|
188 |
+
self,
|
189 |
+
sample_size: Optional[int] = None,
|
190 |
+
in_channels: int = 4,
|
191 |
+
out_channels: int = 4,
|
192 |
+
center_input_sample: bool = False,
|
193 |
+
flip_sin_to_cos: bool = True,
|
194 |
+
freq_shift: int = 0,
|
195 |
+
down_block_types: Tuple[str] = (
|
196 |
+
"CrossAttnDownBlockMV2D",
|
197 |
+
"CrossAttnDownBlockMV2D",
|
198 |
+
"CrossAttnDownBlockMV2D",
|
199 |
+
"DownBlock2D",
|
200 |
+
),
|
201 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
202 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
203 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
204 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
205 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
206 |
+
downsample_padding: int = 1,
|
207 |
+
mid_block_scale_factor: float = 1,
|
208 |
+
act_fn: str = "silu",
|
209 |
+
norm_num_groups: Optional[int] = 32,
|
210 |
+
norm_eps: float = 1e-5,
|
211 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
212 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
213 |
+
encoder_hid_dim: Optional[int] = None,
|
214 |
+
encoder_hid_dim_type: Optional[str] = None,
|
215 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
216 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
217 |
+
dual_cross_attention: bool = False,
|
218 |
+
use_linear_projection: bool = False,
|
219 |
+
class_embed_type: Optional[str] = None,
|
220 |
+
addition_embed_type: Optional[str] = None,
|
221 |
+
addition_time_embed_dim: Optional[int] = None,
|
222 |
+
num_class_embeds: Optional[int] = None,
|
223 |
+
upcast_attention: bool = False,
|
224 |
+
resnet_time_scale_shift: str = "default",
|
225 |
+
resnet_skip_time_act: bool = False,
|
226 |
+
resnet_out_scale_factor: int = 1.0,
|
227 |
+
time_embedding_type: str = "positional",
|
228 |
+
time_embedding_dim: Optional[int] = None,
|
229 |
+
time_embedding_act_fn: Optional[str] = None,
|
230 |
+
timestep_post_act: Optional[str] = None,
|
231 |
+
time_cond_proj_dim: Optional[int] = None,
|
232 |
+
conv_in_kernel: int = 3,
|
233 |
+
conv_out_kernel: int = 3,
|
234 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
235 |
+
class_embeddings_concat: bool = False,
|
236 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
237 |
+
cross_attention_norm: Optional[str] = None,
|
238 |
+
addition_embed_type_num_heads=64,
|
239 |
+
num_views: int = 1,
|
240 |
+
cd_attention_last: bool = False,
|
241 |
+
cd_attention_mid: bool = False,
|
242 |
+
multiview_attention: bool = True,
|
243 |
+
sparse_mv_attention: bool = False,
|
244 |
+
mvcd_attention: bool = False
|
245 |
+
):
|
246 |
+
super().__init__()
|
247 |
+
|
248 |
+
self.sample_size = sample_size
|
249 |
+
|
250 |
+
if num_attention_heads is not None:
|
251 |
+
raise ValueError(
|
252 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
253 |
+
)
|
254 |
+
|
255 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
256 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
257 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
258 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
259 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
260 |
+
# which is why we correct for the naming here.
|
261 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
262 |
+
|
263 |
+
# Check inputs
|
264 |
+
if len(down_block_types) != len(up_block_types):
|
265 |
+
raise ValueError(
|
266 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
267 |
+
)
|
268 |
+
|
269 |
+
if len(block_out_channels) != len(down_block_types):
|
270 |
+
raise ValueError(
|
271 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
272 |
+
)
|
273 |
+
|
274 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
275 |
+
raise ValueError(
|
276 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
277 |
+
)
|
278 |
+
|
279 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
280 |
+
raise ValueError(
|
281 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
282 |
+
)
|
283 |
+
|
284 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
285 |
+
raise ValueError(
|
286 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
287 |
+
)
|
288 |
+
|
289 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
290 |
+
raise ValueError(
|
291 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
292 |
+
)
|
293 |
+
|
294 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
295 |
+
raise ValueError(
|
296 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
297 |
+
)
|
298 |
+
|
299 |
+
# input
|
300 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
301 |
+
self.conv_in = nn.Conv2d(
|
302 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
303 |
+
)
|
304 |
+
|
305 |
+
# time
|
306 |
+
if time_embedding_type == "fourier":
|
307 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
308 |
+
if time_embed_dim % 2 != 0:
|
309 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
310 |
+
self.time_proj = GaussianFourierProjection(
|
311 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
312 |
+
)
|
313 |
+
timestep_input_dim = time_embed_dim
|
314 |
+
elif time_embedding_type == "positional":
|
315 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
316 |
+
|
317 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
318 |
+
timestep_input_dim = block_out_channels[0]
|
319 |
+
else:
|
320 |
+
raise ValueError(
|
321 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
322 |
+
)
|
323 |
+
|
324 |
+
self.time_embedding = TimestepEmbedding(
|
325 |
+
timestep_input_dim,
|
326 |
+
time_embed_dim,
|
327 |
+
act_fn=act_fn,
|
328 |
+
post_act_fn=timestep_post_act,
|
329 |
+
cond_proj_dim=time_cond_proj_dim,
|
330 |
+
)
|
331 |
+
|
332 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
333 |
+
encoder_hid_dim_type = "text_proj"
|
334 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
335 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
336 |
+
|
337 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
338 |
+
raise ValueError(
|
339 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
340 |
+
)
|
341 |
+
|
342 |
+
if encoder_hid_dim_type == "text_proj":
|
343 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
344 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
345 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
346 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
347 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
348 |
+
self.encoder_hid_proj = TextImageProjection(
|
349 |
+
text_embed_dim=encoder_hid_dim,
|
350 |
+
image_embed_dim=cross_attention_dim,
|
351 |
+
cross_attention_dim=cross_attention_dim,
|
352 |
+
)
|
353 |
+
elif encoder_hid_dim_type == "image_proj":
|
354 |
+
# Kandinsky 2.2
|
355 |
+
self.encoder_hid_proj = ImageProjection(
|
356 |
+
image_embed_dim=encoder_hid_dim,
|
357 |
+
cross_attention_dim=cross_attention_dim,
|
358 |
+
)
|
359 |
+
elif encoder_hid_dim_type is not None:
|
360 |
+
raise ValueError(
|
361 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
self.encoder_hid_proj = None
|
365 |
+
|
366 |
+
# class embedding
|
367 |
+
if class_embed_type is None and num_class_embeds is not None:
|
368 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
369 |
+
elif class_embed_type == "timestep":
|
370 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
371 |
+
elif class_embed_type == "identity":
|
372 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
373 |
+
elif class_embed_type == "projection":
|
374 |
+
if projection_class_embeddings_input_dim is None:
|
375 |
+
raise ValueError(
|
376 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
377 |
+
)
|
378 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
379 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
380 |
+
# 2. it projects from an arbitrary input dimension.
|
381 |
+
#
|
382 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
383 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
384 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
385 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
386 |
+
elif class_embed_type == "simple_projection":
|
387 |
+
if projection_class_embeddings_input_dim is None:
|
388 |
+
raise ValueError(
|
389 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
390 |
+
)
|
391 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
392 |
+
else:
|
393 |
+
self.class_embedding = None
|
394 |
+
|
395 |
+
if addition_embed_type == "text":
|
396 |
+
if encoder_hid_dim is not None:
|
397 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
398 |
+
else:
|
399 |
+
text_time_embedding_from_dim = cross_attention_dim
|
400 |
+
|
401 |
+
self.add_embedding = TextTimeEmbedding(
|
402 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
403 |
+
)
|
404 |
+
elif addition_embed_type == "text_image":
|
405 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
406 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
407 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
408 |
+
self.add_embedding = TextImageTimeEmbedding(
|
409 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
410 |
+
)
|
411 |
+
elif addition_embed_type == "text_time":
|
412 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
413 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
414 |
+
elif addition_embed_type == "image":
|
415 |
+
# Kandinsky 2.2
|
416 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
417 |
+
elif addition_embed_type == "image_hint":
|
418 |
+
# Kandinsky 2.2 ControlNet
|
419 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
420 |
+
elif addition_embed_type is not None:
|
421 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
422 |
+
|
423 |
+
if time_embedding_act_fn is None:
|
424 |
+
self.time_embed_act = None
|
425 |
+
else:
|
426 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
427 |
+
|
428 |
+
self.down_blocks = nn.ModuleList([])
|
429 |
+
self.up_blocks = nn.ModuleList([])
|
430 |
+
|
431 |
+
if isinstance(only_cross_attention, bool):
|
432 |
+
if mid_block_only_cross_attention is None:
|
433 |
+
mid_block_only_cross_attention = only_cross_attention
|
434 |
+
|
435 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
436 |
+
|
437 |
+
if mid_block_only_cross_attention is None:
|
438 |
+
mid_block_only_cross_attention = False
|
439 |
+
|
440 |
+
if isinstance(num_attention_heads, int):
|
441 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
442 |
+
|
443 |
+
if isinstance(attention_head_dim, int):
|
444 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
445 |
+
|
446 |
+
if isinstance(cross_attention_dim, int):
|
447 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
448 |
+
|
449 |
+
if isinstance(layers_per_block, int):
|
450 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
451 |
+
|
452 |
+
if isinstance(transformer_layers_per_block, int):
|
453 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
454 |
+
|
455 |
+
if class_embeddings_concat:
|
456 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
457 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
458 |
+
# regular time embeddings
|
459 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
460 |
+
else:
|
461 |
+
blocks_time_embed_dim = time_embed_dim
|
462 |
+
|
463 |
+
# down
|
464 |
+
output_channel = block_out_channels[0]
|
465 |
+
for i, down_block_type in enumerate(down_block_types):
|
466 |
+
input_channel = output_channel
|
467 |
+
output_channel = block_out_channels[i]
|
468 |
+
is_final_block = i == len(block_out_channels) - 1
|
469 |
+
|
470 |
+
down_block = get_down_block(
|
471 |
+
down_block_type,
|
472 |
+
num_layers=layers_per_block[i],
|
473 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
474 |
+
in_channels=input_channel,
|
475 |
+
out_channels=output_channel,
|
476 |
+
temb_channels=blocks_time_embed_dim,
|
477 |
+
add_downsample=not is_final_block,
|
478 |
+
resnet_eps=norm_eps,
|
479 |
+
resnet_act_fn=act_fn,
|
480 |
+
resnet_groups=norm_num_groups,
|
481 |
+
cross_attention_dim=cross_attention_dim[i],
|
482 |
+
num_attention_heads=num_attention_heads[i],
|
483 |
+
downsample_padding=downsample_padding,
|
484 |
+
dual_cross_attention=dual_cross_attention,
|
485 |
+
use_linear_projection=use_linear_projection,
|
486 |
+
only_cross_attention=only_cross_attention[i],
|
487 |
+
upcast_attention=upcast_attention,
|
488 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
489 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
490 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
491 |
+
cross_attention_norm=cross_attention_norm,
|
492 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
493 |
+
num_views=num_views,
|
494 |
+
cd_attention_last=cd_attention_last,
|
495 |
+
cd_attention_mid=cd_attention_mid,
|
496 |
+
multiview_attention=multiview_attention,
|
497 |
+
sparse_mv_attention=sparse_mv_attention,
|
498 |
+
mvcd_attention=mvcd_attention
|
499 |
+
)
|
500 |
+
self.down_blocks.append(down_block)
|
501 |
+
|
502 |
+
# mid
|
503 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
504 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
505 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
506 |
+
in_channels=block_out_channels[-1],
|
507 |
+
temb_channels=blocks_time_embed_dim,
|
508 |
+
resnet_eps=norm_eps,
|
509 |
+
resnet_act_fn=act_fn,
|
510 |
+
output_scale_factor=mid_block_scale_factor,
|
511 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
512 |
+
cross_attention_dim=cross_attention_dim[-1],
|
513 |
+
num_attention_heads=num_attention_heads[-1],
|
514 |
+
resnet_groups=norm_num_groups,
|
515 |
+
dual_cross_attention=dual_cross_attention,
|
516 |
+
use_linear_projection=use_linear_projection,
|
517 |
+
upcast_attention=upcast_attention,
|
518 |
+
)
|
519 |
+
# custom MV2D attention block
|
520 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
521 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
522 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
523 |
+
in_channels=block_out_channels[-1],
|
524 |
+
temb_channels=blocks_time_embed_dim,
|
525 |
+
resnet_eps=norm_eps,
|
526 |
+
resnet_act_fn=act_fn,
|
527 |
+
output_scale_factor=mid_block_scale_factor,
|
528 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
529 |
+
cross_attention_dim=cross_attention_dim[-1],
|
530 |
+
num_attention_heads=num_attention_heads[-1],
|
531 |
+
resnet_groups=norm_num_groups,
|
532 |
+
dual_cross_attention=dual_cross_attention,
|
533 |
+
use_linear_projection=use_linear_projection,
|
534 |
+
upcast_attention=upcast_attention,
|
535 |
+
num_views=num_views,
|
536 |
+
cd_attention_last=cd_attention_last,
|
537 |
+
cd_attention_mid=cd_attention_mid,
|
538 |
+
multiview_attention=multiview_attention,
|
539 |
+
sparse_mv_attention=sparse_mv_attention,
|
540 |
+
mvcd_attention=mvcd_attention
|
541 |
+
)
|
542 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
543 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
544 |
+
in_channels=block_out_channels[-1],
|
545 |
+
temb_channels=blocks_time_embed_dim,
|
546 |
+
resnet_eps=norm_eps,
|
547 |
+
resnet_act_fn=act_fn,
|
548 |
+
output_scale_factor=mid_block_scale_factor,
|
549 |
+
cross_attention_dim=cross_attention_dim[-1],
|
550 |
+
attention_head_dim=attention_head_dim[-1],
|
551 |
+
resnet_groups=norm_num_groups,
|
552 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
553 |
+
skip_time_act=resnet_skip_time_act,
|
554 |
+
only_cross_attention=mid_block_only_cross_attention,
|
555 |
+
cross_attention_norm=cross_attention_norm,
|
556 |
+
)
|
557 |
+
elif mid_block_type is None:
|
558 |
+
self.mid_block = None
|
559 |
+
else:
|
560 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
561 |
+
|
562 |
+
# count how many layers upsample the images
|
563 |
+
self.num_upsamplers = 0
|
564 |
+
|
565 |
+
# up
|
566 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
567 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
568 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
569 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
570 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
571 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
572 |
+
|
573 |
+
output_channel = reversed_block_out_channels[0]
|
574 |
+
for i, up_block_type in enumerate(up_block_types):
|
575 |
+
is_final_block = i == len(block_out_channels) - 1
|
576 |
+
|
577 |
+
prev_output_channel = output_channel
|
578 |
+
output_channel = reversed_block_out_channels[i]
|
579 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
580 |
+
|
581 |
+
# add upsample block for all BUT final layer
|
582 |
+
if not is_final_block:
|
583 |
+
add_upsample = True
|
584 |
+
self.num_upsamplers += 1
|
585 |
+
else:
|
586 |
+
add_upsample = False
|
587 |
+
|
588 |
+
up_block = get_up_block(
|
589 |
+
up_block_type,
|
590 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
591 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
592 |
+
in_channels=input_channel,
|
593 |
+
out_channels=output_channel,
|
594 |
+
prev_output_channel=prev_output_channel,
|
595 |
+
temb_channels=blocks_time_embed_dim,
|
596 |
+
add_upsample=add_upsample,
|
597 |
+
resnet_eps=norm_eps,
|
598 |
+
resnet_act_fn=act_fn,
|
599 |
+
resnet_groups=norm_num_groups,
|
600 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
601 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
602 |
+
dual_cross_attention=dual_cross_attention,
|
603 |
+
use_linear_projection=use_linear_projection,
|
604 |
+
only_cross_attention=only_cross_attention[i],
|
605 |
+
upcast_attention=upcast_attention,
|
606 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
607 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
608 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
609 |
+
cross_attention_norm=cross_attention_norm,
|
610 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
611 |
+
num_views=num_views,
|
612 |
+
cd_attention_last=cd_attention_last,
|
613 |
+
cd_attention_mid=cd_attention_mid,
|
614 |
+
multiview_attention=multiview_attention,
|
615 |
+
sparse_mv_attention=sparse_mv_attention,
|
616 |
+
mvcd_attention=mvcd_attention
|
617 |
+
)
|
618 |
+
self.up_blocks.append(up_block)
|
619 |
+
prev_output_channel = output_channel
|
620 |
+
|
621 |
+
# out
|
622 |
+
if norm_num_groups is not None:
|
623 |
+
self.conv_norm_out = nn.GroupNorm(
|
624 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
625 |
+
)
|
626 |
+
|
627 |
+
self.conv_act = get_activation(act_fn)
|
628 |
+
|
629 |
+
else:
|
630 |
+
self.conv_norm_out = None
|
631 |
+
self.conv_act = None
|
632 |
+
|
633 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
634 |
+
self.conv_out = nn.Conv2d(
|
635 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
636 |
+
)
|
637 |
+
|
638 |
+
@property
|
639 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
640 |
+
r"""
|
641 |
+
Returns:
|
642 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
643 |
+
indexed by its weight name.
|
644 |
+
"""
|
645 |
+
# set recursively
|
646 |
+
processors = {}
|
647 |
+
|
648 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
649 |
+
if hasattr(module, "set_processor"):
|
650 |
+
processors[f"{name}.processor"] = module.processor
|
651 |
+
|
652 |
+
for sub_name, child in module.named_children():
|
653 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
654 |
+
|
655 |
+
return processors
|
656 |
+
|
657 |
+
for name, module in self.named_children():
|
658 |
+
fn_recursive_add_processors(name, module, processors)
|
659 |
+
|
660 |
+
return processors
|
661 |
+
|
662 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
663 |
+
r"""
|
664 |
+
Sets the attention processor to use to compute attention.
|
665 |
+
|
666 |
+
Parameters:
|
667 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
668 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
669 |
+
for **all** `Attention` layers.
|
670 |
+
|
671 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
672 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
673 |
+
|
674 |
+
"""
|
675 |
+
count = len(self.attn_processors.keys())
|
676 |
+
|
677 |
+
if isinstance(processor, dict) and len(processor) != count:
|
678 |
+
raise ValueError(
|
679 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
680 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
681 |
+
)
|
682 |
+
|
683 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
684 |
+
if hasattr(module, "set_processor"):
|
685 |
+
if not isinstance(processor, dict):
|
686 |
+
module.set_processor(processor)
|
687 |
+
else:
|
688 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
689 |
+
|
690 |
+
for sub_name, child in module.named_children():
|
691 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
692 |
+
|
693 |
+
for name, module in self.named_children():
|
694 |
+
fn_recursive_attn_processor(name, module, processor)
|
695 |
+
|
696 |
+
def set_default_attn_processor(self):
|
697 |
+
"""
|
698 |
+
Disables custom attention processors and sets the default attention implementation.
|
699 |
+
"""
|
700 |
+
self.set_attn_processor(AttnProcessor())
|
701 |
+
|
702 |
+
def set_attention_slice(self, slice_size):
|
703 |
+
r"""
|
704 |
+
Enable sliced attention computation.
|
705 |
+
|
706 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
707 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
708 |
+
|
709 |
+
Args:
|
710 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
711 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
712 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
713 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
714 |
+
must be a multiple of `slice_size`.
|
715 |
+
"""
|
716 |
+
sliceable_head_dims = []
|
717 |
+
|
718 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
719 |
+
if hasattr(module, "set_attention_slice"):
|
720 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
721 |
+
|
722 |
+
for child in module.children():
|
723 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
724 |
+
|
725 |
+
# retrieve number of attention layers
|
726 |
+
for module in self.children():
|
727 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
728 |
+
|
729 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
730 |
+
|
731 |
+
if slice_size == "auto":
|
732 |
+
# half the attention head size is usually a good trade-off between
|
733 |
+
# speed and memory
|
734 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
735 |
+
elif slice_size == "max":
|
736 |
+
# make smallest slice possible
|
737 |
+
slice_size = num_sliceable_layers * [1]
|
738 |
+
|
739 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
740 |
+
|
741 |
+
if len(slice_size) != len(sliceable_head_dims):
|
742 |
+
raise ValueError(
|
743 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
744 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
745 |
+
)
|
746 |
+
|
747 |
+
for i in range(len(slice_size)):
|
748 |
+
size = slice_size[i]
|
749 |
+
dim = sliceable_head_dims[i]
|
750 |
+
if size is not None and size > dim:
|
751 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
752 |
+
|
753 |
+
# Recursively walk through all the children.
|
754 |
+
# Any children which exposes the set_attention_slice method
|
755 |
+
# gets the message
|
756 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
757 |
+
if hasattr(module, "set_attention_slice"):
|
758 |
+
module.set_attention_slice(slice_size.pop())
|
759 |
+
|
760 |
+
for child in module.children():
|
761 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
762 |
+
|
763 |
+
reversed_slice_size = list(reversed(slice_size))
|
764 |
+
for module in self.children():
|
765 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
766 |
+
|
767 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
768 |
+
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
769 |
+
module.gradient_checkpointing = value
|
770 |
+
|
771 |
+
def forward(
|
772 |
+
self,
|
773 |
+
sample: torch.FloatTensor,
|
774 |
+
timestep: Union[torch.Tensor, float, int],
|
775 |
+
encoder_hidden_states: torch.Tensor,
|
776 |
+
class_labels: Optional[torch.Tensor] = None,
|
777 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
778 |
+
attention_mask: Optional[torch.Tensor] = None,
|
779 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
780 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
781 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
782 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
783 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
784 |
+
return_dict: bool = True,
|
785 |
+
) -> Union[UNetMV2DConditionOutput, Tuple]:
|
786 |
+
r"""
|
787 |
+
The [`UNet2DConditionModel`] forward method.
|
788 |
+
|
789 |
+
Args:
|
790 |
+
sample (`torch.FloatTensor`):
|
791 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
792 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
793 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
794 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
795 |
+
encoder_attention_mask (`torch.Tensor`):
|
796 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
797 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
798 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
799 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
800 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
801 |
+
tuple.
|
802 |
+
cross_attention_kwargs (`dict`, *optional*):
|
803 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
804 |
+
added_cond_kwargs: (`dict`, *optional*):
|
805 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
806 |
+
are passed along to the UNet blocks.
|
807 |
+
|
808 |
+
Returns:
|
809 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
810 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
811 |
+
a `tuple` is returned where the first element is the sample tensor.
|
812 |
+
"""
|
813 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
814 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
815 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
816 |
+
# on the fly if necessary.
|
817 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
818 |
+
|
819 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
820 |
+
forward_upsample_size = False
|
821 |
+
upsample_size = None
|
822 |
+
|
823 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
824 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
825 |
+
forward_upsample_size = True
|
826 |
+
|
827 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
828 |
+
# expects mask of shape:
|
829 |
+
# [batch, key_tokens]
|
830 |
+
# adds singleton query_tokens dimension:
|
831 |
+
# [batch, 1, key_tokens]
|
832 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
833 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
834 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
835 |
+
if attention_mask is not None:
|
836 |
+
# assume that mask is expressed as:
|
837 |
+
# (1 = keep, 0 = discard)
|
838 |
+
# convert mask into a bias that can be added to attention scores:
|
839 |
+
# (keep = +0, discard = -10000.0)
|
840 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
841 |
+
attention_mask = attention_mask.unsqueeze(1)
|
842 |
+
|
843 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
844 |
+
if encoder_attention_mask is not None:
|
845 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
846 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
847 |
+
|
848 |
+
# 0. center input if necessary
|
849 |
+
if self.config.center_input_sample:
|
850 |
+
sample = 2 * sample - 1.0
|
851 |
+
|
852 |
+
# 1. time
|
853 |
+
timesteps = timestep
|
854 |
+
if not torch.is_tensor(timesteps):
|
855 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
856 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
857 |
+
is_mps = sample.device.type == "mps"
|
858 |
+
if isinstance(timestep, float):
|
859 |
+
dtype = torch.float32 if is_mps else torch.float64
|
860 |
+
else:
|
861 |
+
dtype = torch.int32 if is_mps else torch.int64
|
862 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
863 |
+
elif len(timesteps.shape) == 0:
|
864 |
+
timesteps = timesteps[None].to(sample.device)
|
865 |
+
|
866 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
867 |
+
timesteps = timesteps.expand(sample.shape[0])
|
868 |
+
|
869 |
+
t_emb = self.time_proj(timesteps)
|
870 |
+
|
871 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
872 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
873 |
+
# there might be better ways to encapsulate this.
|
874 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
875 |
+
|
876 |
+
# self.time_embedding.to(dtype=t_emb.dtype)
|
877 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
878 |
+
aug_emb = None
|
879 |
+
|
880 |
+
if self.class_embedding is not None:
|
881 |
+
if class_labels is None:
|
882 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
883 |
+
|
884 |
+
if self.config.class_embed_type == "timestep":
|
885 |
+
class_labels = self.time_proj(class_labels)
|
886 |
+
|
887 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
888 |
+
# there might be better ways to encapsulate this.
|
889 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
890 |
+
|
891 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
892 |
+
|
893 |
+
if self.config.class_embeddings_concat:
|
894 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
895 |
+
else:
|
896 |
+
emb = emb + class_emb
|
897 |
+
|
898 |
+
if self.config.addition_embed_type == "text":
|
899 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
900 |
+
elif self.config.addition_embed_type == "text_image":
|
901 |
+
# Kandinsky 2.1 - style
|
902 |
+
if "image_embeds" not in added_cond_kwargs:
|
903 |
+
raise ValueError(
|
904 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
905 |
+
)
|
906 |
+
|
907 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
908 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
909 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
910 |
+
elif self.config.addition_embed_type == "text_time":
|
911 |
+
# SDXL - style
|
912 |
+
if "text_embeds" not in added_cond_kwargs:
|
913 |
+
raise ValueError(
|
914 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
915 |
+
)
|
916 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
917 |
+
if "time_ids" not in added_cond_kwargs:
|
918 |
+
raise ValueError(
|
919 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
920 |
+
)
|
921 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
922 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
923 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
924 |
+
|
925 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
926 |
+
add_embeds = add_embeds.to(emb.dtype)
|
927 |
+
aug_emb = self.add_embedding(add_embeds)
|
928 |
+
elif self.config.addition_embed_type == "image":
|
929 |
+
# Kandinsky 2.2 - style
|
930 |
+
if "image_embeds" not in added_cond_kwargs:
|
931 |
+
raise ValueError(
|
932 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
933 |
+
)
|
934 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
935 |
+
aug_emb = self.add_embedding(image_embs)
|
936 |
+
elif self.config.addition_embed_type == "image_hint":
|
937 |
+
# Kandinsky 2.2 - style
|
938 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
939 |
+
raise ValueError(
|
940 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
941 |
+
)
|
942 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
943 |
+
hint = added_cond_kwargs.get("hint")
|
944 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
945 |
+
sample = torch.cat([sample, hint], dim=1)
|
946 |
+
|
947 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
948 |
+
|
949 |
+
if self.time_embed_act is not None:
|
950 |
+
emb = self.time_embed_act(emb)
|
951 |
+
|
952 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
953 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
954 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
955 |
+
# Kadinsky 2.1 - style
|
956 |
+
if "image_embeds" not in added_cond_kwargs:
|
957 |
+
raise ValueError(
|
958 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
959 |
+
)
|
960 |
+
|
961 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
962 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
963 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
964 |
+
# Kandinsky 2.2 - style
|
965 |
+
if "image_embeds" not in added_cond_kwargs:
|
966 |
+
raise ValueError(
|
967 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
968 |
+
)
|
969 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
970 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
971 |
+
# 2. pre-process
|
972 |
+
sample = self.conv_in(sample)
|
973 |
+
|
974 |
+
# 3. down
|
975 |
+
|
976 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
977 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
978 |
+
|
979 |
+
down_block_res_samples = (sample,)
|
980 |
+
for downsample_block in self.down_blocks:
|
981 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
982 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
983 |
+
additional_residuals = {}
|
984 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
985 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
986 |
+
|
987 |
+
sample, res_samples = downsample_block(
|
988 |
+
hidden_states=sample,
|
989 |
+
temb=emb,
|
990 |
+
encoder_hidden_states=encoder_hidden_states,
|
991 |
+
attention_mask=attention_mask,
|
992 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
993 |
+
encoder_attention_mask=encoder_attention_mask,
|
994 |
+
**additional_residuals,
|
995 |
+
)
|
996 |
+
else:
|
997 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
998 |
+
|
999 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1000 |
+
sample += down_block_additional_residuals.pop(0)
|
1001 |
+
|
1002 |
+
down_block_res_samples += res_samples
|
1003 |
+
|
1004 |
+
if is_controlnet:
|
1005 |
+
new_down_block_res_samples = ()
|
1006 |
+
|
1007 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1008 |
+
down_block_res_samples, down_block_additional_residuals
|
1009 |
+
):
|
1010 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1011 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1012 |
+
|
1013 |
+
down_block_res_samples = new_down_block_res_samples
|
1014 |
+
|
1015 |
+
# 4. mid
|
1016 |
+
if self.mid_block is not None:
|
1017 |
+
sample = self.mid_block(
|
1018 |
+
sample,
|
1019 |
+
emb,
|
1020 |
+
encoder_hidden_states=encoder_hidden_states,
|
1021 |
+
attention_mask=attention_mask,
|
1022 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1023 |
+
encoder_attention_mask=encoder_attention_mask,
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
if is_controlnet:
|
1027 |
+
sample = sample + mid_block_additional_residual
|
1028 |
+
|
1029 |
+
# 5. up
|
1030 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1031 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1032 |
+
|
1033 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1034 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1035 |
+
|
1036 |
+
# if we have not reached the final block and need to forward the
|
1037 |
+
# upsample size, we do it here
|
1038 |
+
if not is_final_block and forward_upsample_size:
|
1039 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1040 |
+
|
1041 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1042 |
+
sample = upsample_block(
|
1043 |
+
hidden_states=sample,
|
1044 |
+
temb=emb,
|
1045 |
+
res_hidden_states_tuple=res_samples,
|
1046 |
+
encoder_hidden_states=encoder_hidden_states,
|
1047 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1048 |
+
upsample_size=upsample_size,
|
1049 |
+
attention_mask=attention_mask,
|
1050 |
+
encoder_attention_mask=encoder_attention_mask,
|
1051 |
+
)
|
1052 |
+
else:
|
1053 |
+
sample = upsample_block(
|
1054 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
# 6. post-process
|
1058 |
+
if self.conv_norm_out:
|
1059 |
+
sample = self.conv_norm_out(sample)
|
1060 |
+
sample = self.conv_act(sample)
|
1061 |
+
sample = self.conv_out(sample)
|
1062 |
+
|
1063 |
+
if not return_dict:
|
1064 |
+
return (sample,)
|
1065 |
+
|
1066 |
+
return UNetMV2DConditionOutput(sample=sample)
|
1067 |
+
|
1068 |
+
@classmethod
|
1069 |
+
def from_pretrained_2d(
|
1070 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1071 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1072 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1073 |
+
projection_class_embeddings_input_dim: int=6, cd_attention_last: bool = False,
|
1074 |
+
cd_attention_mid: bool = False, multiview_attention: bool = True,
|
1075 |
+
sparse_mv_attention: bool = False, mvcd_attention: bool = False,
|
1076 |
+
in_channels: int = 8, out_channels: int = 4,
|
1077 |
+
**kwargs
|
1078 |
+
):
|
1079 |
+
r"""
|
1080 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1081 |
+
|
1082 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1083 |
+
train the model, set it back in training mode with `model.train()`.
|
1084 |
+
|
1085 |
+
Parameters:
|
1086 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1087 |
+
Can be either:
|
1088 |
+
|
1089 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1090 |
+
the Hub.
|
1091 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1092 |
+
with [`~ModelMixin.save_pretrained`].
|
1093 |
+
|
1094 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1095 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1096 |
+
is not used.
|
1097 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1098 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1099 |
+
dtype is automatically derived from the model's weights.
|
1100 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1101 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1102 |
+
cached versions if they exist.
|
1103 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1104 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1105 |
+
incompletely downloaded files are deleted.
|
1106 |
+
proxies (`Dict[str, str]`, *optional*):
|
1107 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1108 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1109 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1110 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1111 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1112 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1113 |
+
won't be downloaded from the Hub.
|
1114 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1115 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1116 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1117 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1118 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1119 |
+
allowed by Git.
|
1120 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1121 |
+
Load the model weights from a Flax checkpoint save file.
|
1122 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1123 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1124 |
+
mirror (`str`, *optional*):
|
1125 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1126 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1127 |
+
information.
|
1128 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1129 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1130 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1131 |
+
same device.
|
1132 |
+
|
1133 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1134 |
+
more information about each option see [designing a device
|
1135 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1136 |
+
max_memory (`Dict`, *optional*):
|
1137 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1138 |
+
each GPU and the available CPU RAM if unset.
|
1139 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1140 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1141 |
+
offload_state_dict (`bool`, *optional*):
|
1142 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1143 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1144 |
+
when there is some disk offload.
|
1145 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1146 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1147 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1148 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1149 |
+
argument to `True` will raise an error.
|
1150 |
+
variant (`str`, *optional*):
|
1151 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1152 |
+
loading `from_flax`.
|
1153 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1154 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1155 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1156 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1157 |
+
|
1158 |
+
<Tip>
|
1159 |
+
|
1160 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1161 |
+
`huggingface-cli login`. You can also activate the special
|
1162 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1163 |
+
firewalled environment.
|
1164 |
+
|
1165 |
+
</Tip>
|
1166 |
+
|
1167 |
+
Example:
|
1168 |
+
|
1169 |
+
```py
|
1170 |
+
from diffusers import UNet2DConditionModel
|
1171 |
+
|
1172 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1173 |
+
```
|
1174 |
+
|
1175 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1176 |
+
|
1177 |
+
```bash
|
1178 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1179 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1180 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1181 |
+
```
|
1182 |
+
"""
|
1183 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1184 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1185 |
+
force_download = kwargs.pop("force_download", False)
|
1186 |
+
from_flax = kwargs.pop("from_flax", False)
|
1187 |
+
resume_download = kwargs.pop("resume_download", False)
|
1188 |
+
proxies = kwargs.pop("proxies", None)
|
1189 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1190 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1191 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1192 |
+
revision = kwargs.pop("revision", None)
|
1193 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1194 |
+
subfolder = kwargs.pop("subfolder", None)
|
1195 |
+
device_map = kwargs.pop("device_map", None)
|
1196 |
+
max_memory = kwargs.pop("max_memory", None)
|
1197 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1198 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1199 |
+
variant = kwargs.pop("variant", None)
|
1200 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1201 |
+
|
1202 |
+
if use_safetensors and not is_safetensors_available():
|
1203 |
+
raise ValueError(
|
1204 |
+
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
allow_pickle = False
|
1208 |
+
if use_safetensors is None:
|
1209 |
+
use_safetensors = is_safetensors_available()
|
1210 |
+
allow_pickle = True
|
1211 |
+
|
1212 |
+
if device_map is not None and not is_accelerate_available():
|
1213 |
+
raise NotImplementedError(
|
1214 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1215 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1216 |
+
)
|
1217 |
+
|
1218 |
+
# Check if we can handle device_map and dispatching the weights
|
1219 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1220 |
+
raise NotImplementedError(
|
1221 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1222 |
+
" `device_map=None`."
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
# Load config if we don't provide a configuration
|
1226 |
+
config_path = pretrained_model_name_or_path
|
1227 |
+
|
1228 |
+
user_agent = {
|
1229 |
+
"diffusers": __version__,
|
1230 |
+
"file_type": "model",
|
1231 |
+
"framework": "pytorch",
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
# load config
|
1235 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1236 |
+
config_path,
|
1237 |
+
cache_dir=cache_dir,
|
1238 |
+
return_unused_kwargs=True,
|
1239 |
+
return_commit_hash=True,
|
1240 |
+
force_download=force_download,
|
1241 |
+
resume_download=resume_download,
|
1242 |
+
proxies=proxies,
|
1243 |
+
local_files_only=local_files_only,
|
1244 |
+
use_auth_token=use_auth_token,
|
1245 |
+
revision=revision,
|
1246 |
+
subfolder=subfolder,
|
1247 |
+
device_map=device_map,
|
1248 |
+
max_memory=max_memory,
|
1249 |
+
offload_folder=offload_folder,
|
1250 |
+
offload_state_dict=offload_state_dict,
|
1251 |
+
user_agent=user_agent,
|
1252 |
+
**kwargs,
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
# modify config
|
1256 |
+
config["_class_name"] = cls.__name__
|
1257 |
+
config['in_channels'] = in_channels
|
1258 |
+
config['out_channels'] = out_channels
|
1259 |
+
config['sample_size'] = sample_size # training resolution
|
1260 |
+
config['num_views'] = num_views
|
1261 |
+
config['cd_attention_last'] = cd_attention_last
|
1262 |
+
config['cd_attention_mid'] = cd_attention_mid
|
1263 |
+
config['multiview_attention'] = multiview_attention
|
1264 |
+
config['sparse_mv_attention'] = sparse_mv_attention
|
1265 |
+
config['mvcd_attention'] = mvcd_attention
|
1266 |
+
config["down_block_types"] = [
|
1267 |
+
"CrossAttnDownBlockMV2D",
|
1268 |
+
"CrossAttnDownBlockMV2D",
|
1269 |
+
"CrossAttnDownBlockMV2D",
|
1270 |
+
"DownBlock2D"
|
1271 |
+
]
|
1272 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1273 |
+
config["up_block_types"] = [
|
1274 |
+
"UpBlock2D",
|
1275 |
+
"CrossAttnUpBlockMV2D",
|
1276 |
+
"CrossAttnUpBlockMV2D",
|
1277 |
+
"CrossAttnUpBlockMV2D"
|
1278 |
+
]
|
1279 |
+
config['class_embed_type'] = 'projection'
|
1280 |
+
if camera_embedding_type == 'e_de_da_sincos':
|
1281 |
+
config['projection_class_embeddings_input_dim'] = projection_class_embeddings_input_dim # default 6
|
1282 |
+
else:
|
1283 |
+
raise NotImplementedError
|
1284 |
+
|
1285 |
+
# load model
|
1286 |
+
model_file = None
|
1287 |
+
if from_flax:
|
1288 |
+
raise NotImplementedError
|
1289 |
+
else:
|
1290 |
+
if use_safetensors:
|
1291 |
+
try:
|
1292 |
+
model_file = _get_model_file(
|
1293 |
+
pretrained_model_name_or_path,
|
1294 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1295 |
+
cache_dir=cache_dir,
|
1296 |
+
force_download=force_download,
|
1297 |
+
# resume_download=resume_download,
|
1298 |
+
proxies=proxies,
|
1299 |
+
local_files_only=local_files_only,
|
1300 |
+
use_auth_token=use_auth_token,
|
1301 |
+
revision=revision,
|
1302 |
+
subfolder=subfolder,
|
1303 |
+
user_agent=user_agent,
|
1304 |
+
commit_hash=commit_hash,
|
1305 |
+
)
|
1306 |
+
except IOError as e:
|
1307 |
+
if not allow_pickle:
|
1308 |
+
raise e
|
1309 |
+
pass
|
1310 |
+
if model_file is None:
|
1311 |
+
model_file = _get_model_file(
|
1312 |
+
pretrained_model_name_or_path,
|
1313 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1314 |
+
cache_dir=cache_dir,
|
1315 |
+
force_download=force_download,
|
1316 |
+
# resume_download=resume_download,
|
1317 |
+
proxies=proxies,
|
1318 |
+
local_files_only=local_files_only,
|
1319 |
+
use_auth_token=use_auth_token,
|
1320 |
+
revision=revision,
|
1321 |
+
subfolder=subfolder,
|
1322 |
+
user_agent=user_agent,
|
1323 |
+
commit_hash=commit_hash,
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
model = cls.from_config(config, **unused_kwargs)
|
1327 |
+
import copy
|
1328 |
+
state_dict_v0 = load_state_dict(model_file, variant=variant)
|
1329 |
+
state_dict = copy.deepcopy(state_dict_v0)
|
1330 |
+
# attn_joint -> attn_joint_last; norm_joint -> norm_joint_last
|
1331 |
+
# attn_joint_twice -> attn_joint_mid; norm_joint_twice -> norm_joint_mid
|
1332 |
+
for key in state_dict_v0:
|
1333 |
+
if 'attn_joint.' in key:
|
1334 |
+
tmp = copy.deepcopy(key)
|
1335 |
+
state_dict[key.replace("attn_joint.", "attn_joint_last.")] = state_dict.pop(tmp)
|
1336 |
+
if 'norm_joint.' in key:
|
1337 |
+
tmp = copy.deepcopy(key)
|
1338 |
+
state_dict[key.replace("norm_joint.", "norm_joint_last.")] = state_dict.pop(tmp)
|
1339 |
+
if 'attn_joint_twice.' in key:
|
1340 |
+
tmp = copy.deepcopy(key)
|
1341 |
+
state_dict[key.replace("attn_joint_twice.", "attn_joint_mid.")] = state_dict.pop(tmp)
|
1342 |
+
if 'norm_joint_twice.' in key:
|
1343 |
+
tmp = copy.deepcopy(key)
|
1344 |
+
state_dict[key.replace("norm_joint_twice.", "norm_joint_mid.")] = state_dict.pop(tmp)
|
1345 |
+
|
1346 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1347 |
+
|
1348 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1349 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1350 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1351 |
+
model,
|
1352 |
+
state_dict,
|
1353 |
+
model_file,
|
1354 |
+
pretrained_model_name_or_path,
|
1355 |
+
ignore_mismatched_sizes=True,
|
1356 |
+
)
|
1357 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1358 |
+
# initialize from the original SD structure
|
1359 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1360 |
+
|
1361 |
+
# whether to place all zero to new layers?
|
1362 |
+
if zero_init_conv_in:
|
1363 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1364 |
+
|
1365 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1366 |
+
# initialize from the original SD structure
|
1367 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1368 |
+
if out_channels == 8: # copy for the last 4 channels
|
1369 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1370 |
+
|
1371 |
+
# if zero_init_camera_projection:
|
1372 |
+
# for p in model.class_embedding.parameters():
|
1373 |
+
# torch.nn.init.zeros_(p)
|
1374 |
+
|
1375 |
+
loading_info = {
|
1376 |
+
"missing_keys": missing_keys,
|
1377 |
+
"unexpected_keys": unexpected_keys,
|
1378 |
+
"mismatched_keys": mismatched_keys,
|
1379 |
+
"error_msgs": error_msgs,
|
1380 |
+
}
|
1381 |
+
|
1382 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1383 |
+
raise ValueError(
|
1384 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1385 |
+
)
|
1386 |
+
elif torch_dtype is not None:
|
1387 |
+
model = model.to(torch_dtype)
|
1388 |
+
|
1389 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1390 |
+
|
1391 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1392 |
+
model.eval()
|
1393 |
+
if output_loading_info:
|
1394 |
+
return model, loading_info
|
1395 |
+
|
1396 |
+
return model
|
1397 |
+
|
1398 |
+
@classmethod
|
1399 |
+
def _load_pretrained_model_2d(
|
1400 |
+
cls,
|
1401 |
+
model,
|
1402 |
+
state_dict,
|
1403 |
+
resolved_archive_file,
|
1404 |
+
pretrained_model_name_or_path,
|
1405 |
+
ignore_mismatched_sizes=False,
|
1406 |
+
):
|
1407 |
+
# Retrieve missing & unexpected_keys
|
1408 |
+
model_state_dict = model.state_dict()
|
1409 |
+
loaded_keys = list(state_dict.keys())
|
1410 |
+
|
1411 |
+
expected_keys = list(model_state_dict.keys())
|
1412 |
+
|
1413 |
+
original_loaded_keys = loaded_keys
|
1414 |
+
|
1415 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1416 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1417 |
+
|
1418 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1419 |
+
model_to_load = model
|
1420 |
+
|
1421 |
+
def _find_mismatched_keys(
|
1422 |
+
state_dict,
|
1423 |
+
model_state_dict,
|
1424 |
+
loaded_keys,
|
1425 |
+
ignore_mismatched_sizes,
|
1426 |
+
):
|
1427 |
+
mismatched_keys = []
|
1428 |
+
if ignore_mismatched_sizes:
|
1429 |
+
for checkpoint_key in loaded_keys:
|
1430 |
+
model_key = checkpoint_key
|
1431 |
+
|
1432 |
+
if (
|
1433 |
+
model_key in model_state_dict
|
1434 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1435 |
+
):
|
1436 |
+
mismatched_keys.append(
|
1437 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1438 |
+
)
|
1439 |
+
del state_dict[checkpoint_key]
|
1440 |
+
return mismatched_keys
|
1441 |
+
|
1442 |
+
if state_dict is not None:
|
1443 |
+
# Whole checkpoint
|
1444 |
+
mismatched_keys = _find_mismatched_keys(
|
1445 |
+
state_dict,
|
1446 |
+
model_state_dict,
|
1447 |
+
original_loaded_keys,
|
1448 |
+
ignore_mismatched_sizes,
|
1449 |
+
)
|
1450 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1451 |
+
|
1452 |
+
if len(error_msgs) > 0:
|
1453 |
+
error_msg = "\n\t".join(error_msgs)
|
1454 |
+
if "size mismatch" in error_msg:
|
1455 |
+
error_msg += (
|
1456 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1457 |
+
)
|
1458 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1459 |
+
|
1460 |
+
if len(unexpected_keys) > 0:
|
1461 |
+
logger.warning(
|
1462 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1463 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1464 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1465 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1466 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1467 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1468 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1469 |
+
" BertForSequenceClassification model)."
|
1470 |
+
)
|
1471 |
+
else:
|
1472 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1473 |
+
if len(missing_keys) > 0:
|
1474 |
+
logger.warning(
|
1475 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1476 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1477 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1478 |
+
)
|
1479 |
+
elif len(mismatched_keys) == 0:
|
1480 |
+
logger.info(
|
1481 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1482 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1483 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1484 |
+
" without further training."
|
1485 |
+
)
|
1486 |
+
if len(mismatched_keys) > 0:
|
1487 |
+
mismatched_warning = "\n".join(
|
1488 |
+
[
|
1489 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1490 |
+
for key, shape1, shape2 in mismatched_keys
|
1491 |
+
]
|
1492 |
+
)
|
1493 |
+
logger.warning(
|
1494 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1495 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1496 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1497 |
+
" able to use it for predictions and inference."
|
1498 |
+
)
|
1499 |
+
|
1500 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
1501 |
+
|
mv_diffusion_30/pipelines/pipeline_mvdiffusion_image.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import warnings
|
17 |
+
from typing import Callable, List, Optional, Union
|
18 |
+
|
19 |
+
import PIL
|
20 |
+
import torch
|
21 |
+
import torchvision.transforms.functional as TF
|
22 |
+
from packaging import version
|
23 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import FrozenDict
|
26 |
+
from diffusers.image_processor import VaeImageProcessor
|
27 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
28 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
29 |
+
from diffusers.utils.torch_utils import logging, randn_tensor
|
30 |
+
from diffusers.utils.deprecation_utils import deprecate
|
31 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
32 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
33 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
34 |
+
from einops import rearrange, repeat
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37 |
+
|
38 |
+
|
39 |
+
class MVDiffusionImagePipeline(DiffusionPipeline):
|
40 |
+
r"""
|
41 |
+
Pipeline to generate image variations from an input image using Stable Diffusion.
|
42 |
+
|
43 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
44 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vae ([`AutoencoderKL`]):
|
48 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
49 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
50 |
+
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
51 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
52 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
53 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
54 |
+
A `CLIPTokenizer` to tokenize text.
|
55 |
+
unet ([`UNet2DConditionModel`]):
|
56 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
57 |
+
scheduler ([`SchedulerMixin`]):
|
58 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
59 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
60 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
61 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
62 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
63 |
+
about a model's potential harms.
|
64 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
65 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
66 |
+
"""
|
67 |
+
# TODO: feature_extractor is required to encode images (if they are in PIL format),
|
68 |
+
# we should give a descriptive message if the pipeline doesn't have one.
|
69 |
+
_optional_components = ["safety_checker"]
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
vae: AutoencoderKL,
|
74 |
+
image_encoder: CLIPVisionModelWithProjection,
|
75 |
+
unet: UNet2DConditionModel,
|
76 |
+
scheduler: KarrasDiffusionSchedulers,
|
77 |
+
safety_checker: StableDiffusionSafetyChecker,
|
78 |
+
feature_extractor: CLIPImageProcessor,
|
79 |
+
requires_safety_checker: bool = True,
|
80 |
+
camera_embedding_type: str = 'e_de_da_sincos',
|
81 |
+
num_views: int = 6,
|
82 |
+
pred_type: str = 'color',
|
83 |
+
):
|
84 |
+
super().__init__()
|
85 |
+
|
86 |
+
if safety_checker is None and requires_safety_checker:
|
87 |
+
logger.warn(
|
88 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
89 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
90 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
91 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
92 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
93 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
94 |
+
)
|
95 |
+
|
96 |
+
if safety_checker is not None and feature_extractor is None:
|
97 |
+
raise ValueError(
|
98 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
99 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
100 |
+
)
|
101 |
+
|
102 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
103 |
+
version.parse(unet.config._diffusers_version).base_version
|
104 |
+
) < version.parse("0.9.0.dev0")
|
105 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
106 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
107 |
+
deprecation_message = (
|
108 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
109 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
110 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
111 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
112 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
113 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
114 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
115 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
116 |
+
" the `unet/config.json` file"
|
117 |
+
)
|
118 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
119 |
+
new_config = dict(unet.config)
|
120 |
+
new_config["sample_size"] = 64
|
121 |
+
unet._internal_dict = FrozenDict(new_config)
|
122 |
+
|
123 |
+
self.register_modules(
|
124 |
+
vae=vae,
|
125 |
+
image_encoder=image_encoder,
|
126 |
+
unet=unet,
|
127 |
+
scheduler=scheduler,
|
128 |
+
safety_checker=safety_checker,
|
129 |
+
feature_extractor=feature_extractor,
|
130 |
+
)
|
131 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
132 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
133 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
134 |
+
|
135 |
+
self.camera_embedding_type: str = camera_embedding_type
|
136 |
+
self.num_views: int = num_views
|
137 |
+
self.pred_type = pred_type
|
138 |
+
|
139 |
+
self.camera_embedding = torch.tensor(
|
140 |
+
[[ 0.0000, 0.0000, 0.0000, 1.0000, 0.0000],
|
141 |
+
[ 0.0000, -0.2362, 0.8125, 1.0000, 0.0000],
|
142 |
+
[ 0.0000, -0.1686, 1.6934, 1.0000, 0.0000],
|
143 |
+
[ 0.0000, 0.5220, 3.1406, 1.0000, 0.0000],
|
144 |
+
[ 0.0000, 0.6904, 4.8359, 1.0000, 0.0000],
|
145 |
+
[ 0.0000, 0.3733, 5.5859, 1.0000, 0.0000],
|
146 |
+
[ 0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
|
147 |
+
[ 0.0000, -0.2362, 0.8125, 0.0000, 1.0000],
|
148 |
+
[ 0.0000, -0.1686, 1.6934, 0.0000, 1.0000],
|
149 |
+
[ 0.0000, 0.5220, 3.1406, 0.0000, 1.0000],
|
150 |
+
[ 0.0000, 0.6904, 4.8359, 0.0000, 1.0000],
|
151 |
+
[ 0.0000, 0.3733, 5.5859, 0.0000, 1.0000]], dtype=torch.float16)
|
152 |
+
|
153 |
+
def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance):
|
154 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
155 |
+
|
156 |
+
image_pt = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
|
157 |
+
image_pt = image_pt.to(device=device, dtype=dtype)
|
158 |
+
image_embeddings = self.image_encoder(image_pt).image_embeds
|
159 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
160 |
+
|
161 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
162 |
+
# Note: repeat differently from official pipelines
|
163 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
164 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
165 |
+
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
|
166 |
+
|
167 |
+
if do_classifier_free_guidance:
|
168 |
+
negative_prompt_embeds = torch.zeros_like(image_embeddings)
|
169 |
+
|
170 |
+
# For classifier free guidance, we need to do two forward passes.
|
171 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
172 |
+
# to avoid doing two forward passes
|
173 |
+
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
174 |
+
|
175 |
+
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device).to(dtype)
|
176 |
+
image_pt = image_pt * 2.0 - 1.0
|
177 |
+
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
|
178 |
+
# Note: repeat differently from official pipelines
|
179 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
180 |
+
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
181 |
+
|
182 |
+
if do_classifier_free_guidance:
|
183 |
+
image_latents = torch.cat([torch.zeros_like(image_latents), image_latents])
|
184 |
+
|
185 |
+
return image_embeddings, image_latents
|
186 |
+
|
187 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
188 |
+
def run_safety_checker(self, image, device, dtype):
|
189 |
+
if self.safety_checker is None:
|
190 |
+
has_nsfw_concept = None
|
191 |
+
else:
|
192 |
+
if torch.is_tensor(image):
|
193 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
194 |
+
else:
|
195 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
196 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
197 |
+
image, has_nsfw_concept = self.safety_checker(
|
198 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
199 |
+
)
|
200 |
+
return image, has_nsfw_concept
|
201 |
+
|
202 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
203 |
+
def decode_latents(self, latents):
|
204 |
+
warnings.warn(
|
205 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
206 |
+
" use VaeImageProcessor instead",
|
207 |
+
FutureWarning,
|
208 |
+
)
|
209 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
210 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
211 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
212 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
213 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
214 |
+
return image
|
215 |
+
|
216 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
217 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
218 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
219 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
220 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
221 |
+
# and should be between [0, 1]
|
222 |
+
|
223 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
224 |
+
extra_step_kwargs = {}
|
225 |
+
if accepts_eta:
|
226 |
+
extra_step_kwargs["eta"] = eta
|
227 |
+
|
228 |
+
# check if the scheduler accepts generator
|
229 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
230 |
+
if accepts_generator:
|
231 |
+
extra_step_kwargs["generator"] = generator
|
232 |
+
return extra_step_kwargs
|
233 |
+
|
234 |
+
def check_inputs(self, image, height, width, callback_steps):
|
235 |
+
if (
|
236 |
+
not isinstance(image, torch.Tensor)
|
237 |
+
and not isinstance(image, PIL.Image.Image)
|
238 |
+
and not isinstance(image, list)
|
239 |
+
):
|
240 |
+
raise ValueError(
|
241 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
242 |
+
f" {type(image)}"
|
243 |
+
)
|
244 |
+
|
245 |
+
if height % 8 != 0 or width % 8 != 0:
|
246 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
247 |
+
|
248 |
+
if (callback_steps is None) or (
|
249 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
250 |
+
):
|
251 |
+
raise ValueError(
|
252 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
253 |
+
f" {type(callback_steps)}."
|
254 |
+
)
|
255 |
+
|
256 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
257 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, cross_domain_latnte=True):
|
258 |
+
if cross_domain_latnte:
|
259 |
+
# generate cross-domain initial latents
|
260 |
+
# for cross-domain task, make sure the two domain are start from a same initial latents
|
261 |
+
assert batch_size % 2 == 0
|
262 |
+
batch_size = batch_size // 2
|
263 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
264 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
265 |
+
raise ValueError(
|
266 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
267 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
268 |
+
)
|
269 |
+
|
270 |
+
if latents is None:
|
271 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
272 |
+
else:
|
273 |
+
latents = latents.to(device)
|
274 |
+
|
275 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
276 |
+
latents = latents * self.scheduler.init_noise_sigma
|
277 |
+
if cross_domain_latnte:
|
278 |
+
latents = torch.cat([latents] * 2)
|
279 |
+
return latents
|
280 |
+
|
281 |
+
def prepare_camera_embedding(self, camera_embedding: Union[float, torch.Tensor], do_classifier_free_guidance, num_images_per_prompt=1):
|
282 |
+
# (B, 3)
|
283 |
+
camera_embedding = camera_embedding.to(dtype=self.unet.dtype, device=self.unet.device)
|
284 |
+
|
285 |
+
if self.camera_embedding_type == 'e_de_da_sincos':
|
286 |
+
# (B, 6)
|
287 |
+
camera_embedding = torch.cat([
|
288 |
+
torch.sin(camera_embedding),
|
289 |
+
torch.cos(camera_embedding)
|
290 |
+
], dim=-1)
|
291 |
+
assert self.unet.config.class_embed_type == 'projection'
|
292 |
+
assert self.unet.config.projection_class_embeddings_input_dim == 14 or self.unet.config.projection_class_embeddings_input_dim == 10
|
293 |
+
else:
|
294 |
+
raise NotImplementedError
|
295 |
+
|
296 |
+
# Note: repeat differently from official pipelines
|
297 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
298 |
+
camera_embedding = camera_embedding.repeat(num_images_per_prompt, 1)
|
299 |
+
|
300 |
+
if do_classifier_free_guidance:
|
301 |
+
camera_embedding = torch.cat([
|
302 |
+
camera_embedding,
|
303 |
+
camera_embedding
|
304 |
+
], dim=0)
|
305 |
+
|
306 |
+
return camera_embedding
|
307 |
+
|
308 |
+
def reshape_to_cd_input(self, input):
|
309 |
+
# reshape input for cross-domain attention
|
310 |
+
input_norm_uc, input_rgb_uc, input_norm_cond, input_rgb_cond = torch.chunk(
|
311 |
+
input, dim=0, chunks=4)
|
312 |
+
input = torch.cat(
|
313 |
+
[input_norm_uc, input_norm_cond, input_rgb_uc, input_rgb_cond], dim=0)
|
314 |
+
return input
|
315 |
+
|
316 |
+
def reshape_to_cfg_output(self, output):
|
317 |
+
# reshape input for cfg
|
318 |
+
output_norm_uc, output_norm_cond, output_rgb_uc, output_rgb_cond = torch.chunk(
|
319 |
+
output, dim=0, chunks=4)
|
320 |
+
output = torch.cat(
|
321 |
+
[output_norm_uc, output_rgb_uc, output_norm_cond, output_rgb_cond],
|
322 |
+
dim=0)
|
323 |
+
return output
|
324 |
+
|
325 |
+
@torch.no_grad()
|
326 |
+
def __call__(
|
327 |
+
self,
|
328 |
+
image: Union[List[PIL.Image.Image], torch.FloatTensor],
|
329 |
+
# elevation_cond: torch.FloatTensor,
|
330 |
+
# elevation: torch.FloatTensor,
|
331 |
+
# azimuth: torch.FloatTensor,
|
332 |
+
camera_embedding: Optional[torch.FloatTensor]=None,
|
333 |
+
height: Optional[int] = None,
|
334 |
+
width: Optional[int] = None,
|
335 |
+
num_inference_steps: int = 50,
|
336 |
+
guidance_scale: float = 7.5,
|
337 |
+
num_images_per_prompt: Optional[int] = 1,
|
338 |
+
eta: float = 0.0,
|
339 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
340 |
+
latents: Optional[torch.FloatTensor] = None,
|
341 |
+
output_type: Optional[str] = "pil",
|
342 |
+
return_dict: bool = True,
|
343 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
344 |
+
callback_steps: int = 1,
|
345 |
+
normal_cond: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None,
|
346 |
+
):
|
347 |
+
r"""
|
348 |
+
The call function to the pipeline for generation.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
352 |
+
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
353 |
+
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
354 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
355 |
+
The height in pixels of the generated image.
|
356 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
357 |
+
The width in pixels of the generated image.
|
358 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
359 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
360 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
361 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
362 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
363 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
364 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
365 |
+
The number of images to generate per prompt.
|
366 |
+
eta (`float`, *optional*, defaults to 0.0):
|
367 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
368 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
369 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
370 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
371 |
+
generation deterministic.
|
372 |
+
latents (`torch.FloatTensor`, *optional*):
|
373 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
374 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
375 |
+
tensor is generated by sampling using the supplied random `generator`.
|
376 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
377 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
378 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
379 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
380 |
+
plain tuple.
|
381 |
+
callback (`Callable`, *optional*):
|
382 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
383 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
384 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
385 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
386 |
+
every step.
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
390 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
391 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
392 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
393 |
+
"not-safe-for-work" (nsfw) content.
|
394 |
+
|
395 |
+
Examples:
|
396 |
+
|
397 |
+
```py
|
398 |
+
from diffusers import StableDiffusionImageVariationPipeline
|
399 |
+
from PIL import Image
|
400 |
+
from io import BytesIO
|
401 |
+
import requests
|
402 |
+
|
403 |
+
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
|
404 |
+
"lambdalabs/sd-image-variations-diffusers", revision="v2.0"
|
405 |
+
)
|
406 |
+
pipe = pipe.to("cuda")
|
407 |
+
|
408 |
+
url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200"
|
409 |
+
|
410 |
+
response = requests.get(url)
|
411 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
412 |
+
|
413 |
+
out = pipe(image, num_images_per_prompt=3, guidance_scale=15)
|
414 |
+
out["images"][0].save("result.jpg")
|
415 |
+
```
|
416 |
+
"""
|
417 |
+
# 0. Default height and width to unet
|
418 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
419 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
420 |
+
|
421 |
+
# 1. Check inputs. Raise error if not correct
|
422 |
+
self.check_inputs(image, height, width, callback_steps)
|
423 |
+
|
424 |
+
|
425 |
+
# 2. Define call parameters
|
426 |
+
if isinstance(image, list):
|
427 |
+
batch_size = len(image)
|
428 |
+
elif isinstance(image, torch.Tensor):
|
429 |
+
batch_size = image.shape[0]
|
430 |
+
assert batch_size >= self.num_views and batch_size % self.num_views == 0
|
431 |
+
elif isinstance(image, PIL.Image.Image):
|
432 |
+
image = [image]*self.num_views*2
|
433 |
+
batch_size = self.num_views*2
|
434 |
+
|
435 |
+
device = self._execution_device
|
436 |
+
dtype = self.vae.dtype
|
437 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
438 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
439 |
+
# corresponds to doing no classifier free guidance.
|
440 |
+
do_classifier_free_guidance = guidance_scale != 1.0
|
441 |
+
|
442 |
+
# 3. Encode input image
|
443 |
+
if isinstance(image, list):
|
444 |
+
image_pil = image
|
445 |
+
elif isinstance(image, torch.Tensor):
|
446 |
+
image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
|
447 |
+
image_embeddings, image_latents = self._encode_image(image_pil, device, num_images_per_prompt, do_classifier_free_guidance)
|
448 |
+
|
449 |
+
if normal_cond is not None:
|
450 |
+
if isinstance(normal_cond, list):
|
451 |
+
normal_cond_pil = normal_cond
|
452 |
+
elif isinstance(normal_cond, torch.Tensor):
|
453 |
+
normal_cond_pil = [TF.to_pil_image(normal_cond[i]) for i in range(normal_cond.shape[0])]
|
454 |
+
_, image_latents = self._encode_image(normal_cond_pil, device, num_images_per_prompt, do_classifier_free_guidance)
|
455 |
+
|
456 |
+
|
457 |
+
# assert len(elevation_cond) == batch_size and len(elevation) == batch_size and len(azimuth) == batch_size
|
458 |
+
# camera_embeddings = self.prepare_camera_condition(elevation_cond, elevation, azimuth, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
|
459 |
+
|
460 |
+
if camera_embedding is not None:
|
461 |
+
assert len(camera_embedding) == batch_size
|
462 |
+
else:
|
463 |
+
camera_embedding = self.camera_embedding.to(dtype)
|
464 |
+
camera_embedding = repeat(camera_embedding, "Nv Nce -> (B Nv) Nce", B=batch_size//len(camera_embedding))
|
465 |
+
camera_embeddings = self.prepare_camera_embedding(camera_embedding, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
|
466 |
+
|
467 |
+
# 4. Prepare timesteps
|
468 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
469 |
+
timesteps = self.scheduler.timesteps
|
470 |
+
|
471 |
+
# 5. Prepare latent variables
|
472 |
+
num_channels_latents = self.unet.config.out_channels
|
473 |
+
latents = self.prepare_latents(
|
474 |
+
batch_size * num_images_per_prompt,
|
475 |
+
num_channels_latents,
|
476 |
+
height,
|
477 |
+
width,
|
478 |
+
image_embeddings.dtype,
|
479 |
+
device,
|
480 |
+
generator,
|
481 |
+
latents,
|
482 |
+
cross_domain_latnte=True
|
483 |
+
)
|
484 |
+
|
485 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
486 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
487 |
+
|
488 |
+
# 7. Denoising loop
|
489 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
490 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
491 |
+
if do_classifier_free_guidance and self.pred_type == 'joint_color_normal':
|
492 |
+
print("reshape the input to cross-domain format")
|
493 |
+
image_embeddings = self.reshape_to_cd_input(image_embeddings)
|
494 |
+
camera_embeddings = self.reshape_to_cd_input(camera_embeddings)
|
495 |
+
image_latents = self.reshape_to_cd_input(image_latents)
|
496 |
+
for i, t in enumerate(timesteps):
|
497 |
+
# expand the latents if we are doing classifier free guidance
|
498 |
+
# latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
499 |
+
if do_classifier_free_guidance and self.pred_type == 'joint_color_normal':
|
500 |
+
latent_model_input = torch.cat([latents] * 2)
|
501 |
+
latent_model_input = self.reshape_to_cd_input(latent_model_input)
|
502 |
+
elif do_classifier_free_guidance and self.pred_type != 'joint_color_normal':
|
503 |
+
latent_model_input = torch.cat([latents] * 2)
|
504 |
+
else:
|
505 |
+
latent_model_input = latents
|
506 |
+
|
507 |
+
latent_model_input = torch.cat([
|
508 |
+
latent_model_input, image_latents
|
509 |
+
], dim=1)
|
510 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
511 |
+
|
512 |
+
# predict the noise residual
|
513 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings,
|
514 |
+
class_labels=camera_embeddings).sample
|
515 |
+
|
516 |
+
# perform guidance
|
517 |
+
if do_classifier_free_guidance and self.pred_type != 'joint_color_normal':
|
518 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
519 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
520 |
+
elif do_classifier_free_guidance and self.pred_type == 'joint_color_normal':
|
521 |
+
noise_pred = self.reshape_to_cfg_output(noise_pred)
|
522 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
523 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
524 |
+
|
525 |
+
# compute the previous noisy sample x_t -> x_t-1
|
526 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
527 |
+
|
528 |
+
# call the callback, if provided
|
529 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
530 |
+
progress_bar.update()
|
531 |
+
if callback is not None and i % callback_steps == 0:
|
532 |
+
callback(i, t, latents)
|
533 |
+
|
534 |
+
if not output_type == "latent":
|
535 |
+
if num_channels_latents == 8:
|
536 |
+
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
|
537 |
+
|
538 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
539 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype)
|
540 |
+
else:
|
541 |
+
image = latents
|
542 |
+
has_nsfw_concept = None
|
543 |
+
|
544 |
+
if has_nsfw_concept is None:
|
545 |
+
do_denormalize = [True] * image.shape[0]
|
546 |
+
else:
|
547 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
548 |
+
|
549 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
550 |
+
|
551 |
+
if not return_dict:
|
552 |
+
return (image, has_nsfw_concept)
|
553 |
+
|
554 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
555 |
+
|