Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
5 |
-
from diffusers.utils import export_to_video
|
6 |
|
7 |
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
|
8 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
@@ -15,12 +14,21 @@ def create_image_caption(image_init):
|
|
15 |
print("cap: " + cap)
|
16 |
return cap
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def infer(image_init):
|
19 |
prompt = create_image_caption(image_init)
|
20 |
-
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
|
21 |
-
video_path = export_to_video(video_frames)
|
22 |
print(video_path)
|
23 |
-
return prompt, video_path
|
24 |
|
25 |
css = """
|
26 |
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
|
@@ -108,16 +116,9 @@ with gr.Blocks(css=css) as demo:
|
|
108 |
coca_cap = gr.Textbox(label="Caption", placeholder="CoCa Caption will be displayed here", elem_id="coca-cap-in")
|
109 |
video_result = gr.Video(label="Video Output", elem_id="video-output")
|
110 |
|
111 |
-
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
112 |
-
community_icon = gr.HTML(community_icon_html)
|
113 |
-
loading_icon = gr.HTML(loading_icon_html)
|
114 |
-
share_button = gr.Button("Share to community", elem_id="share-btn")
|
115 |
-
|
116 |
submit_btn.click(fn=infer,
|
117 |
inputs=[image_init],
|
118 |
-
outputs=[coca_cap, video_result
|
119 |
-
|
120 |
-
share_button.click(None, [], [], _js=share_js)
|
121 |
|
122 |
demo.queue(max_size=12).launch()
|
123 |
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
|
|
5 |
|
6 |
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
|
7 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
14 |
print("cap: " + cap)
|
15 |
return cap
|
16 |
|
17 |
+
def export_to_video(frames: np.ndarray, fps: int) -> str:
|
18 |
+
frames = np.clip((frames * 255), 0, 255).astype(np.uint8)
|
19 |
+
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
20 |
+
writer = imageio.get_writer(out_file.name, format="FFMPEG", fps=fps)
|
21 |
+
for frame in frames:
|
22 |
+
writer.append_data(frame)
|
23 |
+
writer.close()
|
24 |
+
return out_file.name
|
25 |
+
|
26 |
def infer(image_init):
|
27 |
prompt = create_image_caption(image_init)
|
28 |
+
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames[0]
|
29 |
+
video_path = export_to_video(video_frames, 12)
|
30 |
print(video_path)
|
31 |
+
return prompt, video_path
|
32 |
|
33 |
css = """
|
34 |
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
|
|
|
116 |
coca_cap = gr.Textbox(label="Caption", placeholder="CoCa Caption will be displayed here", elem_id="coca-cap-in")
|
117 |
video_result = gr.Video(label="Video Output", elem_id="video-output")
|
118 |
|
|
|
|
|
|
|
|
|
|
|
119 |
submit_btn.click(fn=infer,
|
120 |
inputs=[image_init],
|
121 |
+
outputs=[coca_cap, video_result])
|
|
|
|
|
122 |
|
123 |
demo.queue(max_size=12).launch()
|
124 |
|