Spaces:
Paused
Paused
import os | |
import time | |
import torch | |
import pickle | |
import torch.distributed as dist | |
def init_distributed(opt): | |
opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available() | |
if 'OMPI_COMM_WORLD_SIZE' not in os.environ: | |
# application was started without MPI | |
# default to single node with single process | |
opt['env_info'] = 'no MPI' | |
opt['world_size'] = 1 | |
opt['local_size'] = 1 | |
opt['rank'] = 0 | |
opt['local_rank'] = 0 | |
opt['master_address'] = '127.0.0.1' | |
opt['master_port'] = '8673' | |
else: | |
# application was started with MPI | |
# get MPI parameters | |
opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE']) | |
opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
# set up device | |
if not opt['CUDA']: | |
assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend' | |
opt['device'] = torch.device("cpu") | |
else: | |
torch.cuda.set_device(opt['local_rank']) | |
opt['device'] = torch.device("cuda", opt['local_rank']) | |
return opt | |
def is_main_process(): | |
rank = 0 | |
if 'OMPI_COMM_WORLD_SIZE' in os.environ: | |
rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
return rank == 0 | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def synchronize(): | |
""" | |
Helper function to synchronize (barrier) among all processes when | |
using distributed training | |
""" | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
rank = dist.get_rank() | |
if world_size == 1: | |
return | |
def _send_and_wait(r): | |
if rank == r: | |
tensor = torch.tensor(0, device="cuda") | |
else: | |
tensor = torch.tensor(1, device="cuda") | |
dist.broadcast(tensor, r) | |
while tensor.item() == 1: | |
time.sleep(1) | |
_send_and_wait(0) | |
# now sync on the main process | |
_send_and_wait(1) | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to("cuda") | |
# obtain Tensor size of each rank | |
local_size = torch.IntTensor([tensor.numel()]).to("cuda") | |
size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
""" | |
Args: | |
input_dict (dict): all the values will be reduced | |
average (bool): whether to do average or sum | |
Reduce the values in the dictionary from all processes so that process with rank | |
0 has the averaged results. Returns a dict with the same fields as | |
input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.reduce(values, dst=0) | |
if dist.get_rank() == 0 and average: | |
# only main process gets accumulated, so only divide by | |
# world_size in this case | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |
def broadcast_data(data): | |
if not torch.distributed.is_initialized(): | |
return data | |
rank = dist.get_rank() | |
if rank == 0: | |
data_tensor = torch.tensor(data + [0], device="cuda") | |
else: | |
data_tensor = torch.tensor(data + [1], device="cuda") | |
torch.distributed.broadcast(data_tensor, 0) | |
while data_tensor.cpu().numpy()[-1] == 1: | |
time.sleep(1) | |
return data_tensor.cpu().numpy().tolist()[:-1] | |
def reduce_sum(tensor): | |
if get_world_size() <= 1: | |
return tensor | |
tensor = tensor.clone() | |
dist.all_reduce(tensor, op=dist.ReduceOp.SUM) | |
return tensor |