Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py | |
# -------------------------------------------------------- | |
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com) | |
# -------------------------------------------------------- | |
import logging | |
from typing import Optional | |
import torch | |
from torch import nn, Tensor | |
from torch.nn import functional as F | |
from timm.models.layers import trunc_normal_ | |
from detectron2.layers import Conv2d | |
import fvcore.nn.weight_init as weight_init | |
from .registry import register_decoder | |
from ...utils import configurable | |
from ...modules import PositionEmbeddingSine | |
class SelfAttentionLayer(nn.Module): | |
def __init__(self, d_model, nhead, dropout=0.0, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.norm = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(tgt, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout(tgt2) | |
tgt = self.norm(tgt) | |
return tgt | |
def forward_pre(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout(tgt2) | |
return tgt | |
def forward(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, tgt_mask, | |
tgt_key_padding_mask, query_pos) | |
return self.forward_post(tgt, tgt_mask, | |
tgt_key_padding_mask, query_pos) | |
class CrossAttentionLayer(nn.Module): | |
def __init__(self, d_model, nhead, dropout=0.0, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.norm = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, memory, | |
memory_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask) | |
tgt = tgt + self.dropout(tgt2) | |
tgt = self.norm(tgt) | |
return tgt, avg_attn | |
def forward_pre(self, tgt, memory, | |
memory_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm(tgt) | |
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask) | |
tgt = tgt + self.dropout(tgt2) | |
return tgt, avg_attn | |
def forward(self, tgt, memory, | |
memory_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, memory_mask, | |
memory_key_padding_mask, pos, query_pos) | |
return self.forward_post(tgt, memory, memory_mask, | |
memory_key_padding_mask, pos, query_pos) | |
class FFNLayer(nn.Module): | |
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm = nn.LayerNorm(d_model) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt): | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout(tgt2) | |
tgt = self.norm(tgt) | |
return tgt | |
def forward_pre(self, tgt): | |
tgt2 = self.norm(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout(tgt2) | |
return tgt | |
def forward(self, tgt): | |
if self.normalize_before: | |
return self.forward_pre(tgt) | |
return self.forward_post(tgt) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
class MultiScaleMaskedTransformerDecoder(nn.Module): | |
_version = 2 | |
def __init__( | |
self, | |
lang_encoder: nn.Module, | |
in_channels, | |
mask_classification=True, | |
*, | |
hidden_dim: int, | |
dim_proj: int, | |
num_queries: int, | |
contxt_len: int, | |
nheads: int, | |
dim_feedforward: int, | |
dec_layers: int, | |
pre_norm: bool, | |
mask_dim: int, | |
task_switch: dict, | |
captioning_step: int, | |
enforce_input_project: bool, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
in_channels: channels of the input features | |
mask_classification: whether to add mask classifier or not | |
num_classes: number of classes | |
hidden_dim: Transformer feature dimension | |
num_queries: number of queries | |
nheads: number of heads | |
dim_feedforward: feature dimension in feedforward network | |
enc_layers: number of Transformer encoder layers | |
dec_layers: number of Transformer decoder layers | |
pre_norm: whether to use pre-LayerNorm or not | |
mask_dim: mask feature dimension | |
enforce_input_project: add input project 1x1 conv even if input | |
channels and hidden dim is identical | |
""" | |
super().__init__() | |
assert mask_classification, "Only support mask classification model" | |
self.mask_classification = mask_classification | |
# positional encoding | |
N_steps = hidden_dim // 2 | |
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) | |
# define Transformer decoder here | |
self.num_heads = nheads | |
self.num_layers = dec_layers | |
self.contxt_len = contxt_len | |
self.transformer_self_attention_layers = nn.ModuleList() | |
self.transformer_cross_attention_layers = nn.ModuleList() | |
self.transformer_ffn_layers = nn.ModuleList() | |
for _ in range(self.num_layers): | |
self.transformer_self_attention_layers.append( | |
SelfAttentionLayer( | |
d_model=hidden_dim, | |
nhead=nheads, | |
dropout=0.0, | |
normalize_before=pre_norm, | |
) | |
) | |
self.transformer_cross_attention_layers.append( | |
CrossAttentionLayer( | |
d_model=hidden_dim, | |
nhead=nheads, | |
dropout=0.0, | |
normalize_before=pre_norm, | |
) | |
) | |
self.transformer_ffn_layers.append( | |
FFNLayer( | |
d_model=hidden_dim, | |
dim_feedforward=dim_feedforward, | |
dropout=0.0, | |
normalize_before=pre_norm, | |
) | |
) | |
self.decoder_norm = nn.LayerNorm(hidden_dim) | |
self.num_queries = num_queries | |
# learnable query features | |
self.query_feat = nn.Embedding(num_queries, hidden_dim) | |
# learnable query p.e. | |
self.query_embed = nn.Embedding(num_queries, hidden_dim) | |
# level embedding (we always use 3 scales) | |
self.num_feature_levels = 3 | |
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) | |
self.input_proj = nn.ModuleList() | |
for _ in range(self.num_feature_levels): | |
if in_channels != hidden_dim or enforce_input_project: | |
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1)) | |
weight_init.c2_xavier_fill(self.input_proj[-1]) | |
else: | |
self.input_proj.append(nn.Sequential()) | |
self.task_switch = task_switch | |
# output FFNs | |
self.lang_encoder = lang_encoder | |
if self.task_switch['mask']: | |
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) | |
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj)) | |
trunc_normal_(self.class_embed, std=.02) | |
if task_switch['bbox']: | |
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
# Caption Project and query | |
if task_switch['captioning']: | |
self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj)) | |
trunc_normal_(self.caping_embed, std=.02) | |
# self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim) | |
self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim) | |
self.captioning_step = captioning_step | |
# register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query | |
self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool() | |
self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query. | |
self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token. | |
self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query. | |
self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query. | |
self.register_buffer("self_attn_mask", self_attn_mask) | |
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra): | |
ret = {} | |
ret["lang_encoder"] = lang_encoder | |
ret["in_channels"] = in_channels | |
ret["mask_classification"] = mask_classification | |
enc_cfg = cfg['MODEL']['ENCODER'] | |
dec_cfg = cfg['MODEL']['DECODER'] | |
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM'] | |
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ'] | |
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES'] | |
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] | |
# Transformer parameters: | |
ret["nheads"] = dec_cfg['NHEADS'] | |
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD'] | |
# NOTE: because we add learnable query features which requires supervision, | |
# we add minus 1 to decoder layers to be consistent with our loss | |
# implementation: that is, number of auxiliary losses is always | |
# equal to number of decoder layers. With learnable query features, the number of | |
# auxiliary losses equals number of decoders plus 1. | |
assert dec_cfg['DEC_LAYERS'] >= 1 | |
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1 | |
ret["pre_norm"] = dec_cfg['PRE_NORM'] | |
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ'] | |
ret["mask_dim"] = enc_cfg['MASK_DIM'] | |
ret["task_switch"] = extra['task_switch'] | |
ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50) | |
return ret | |
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): | |
if task == 'captioning_infer': | |
return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra) | |
# x is a list of multi-scale feature | |
assert len(x) == self.num_feature_levels | |
src = [] | |
pos = [] | |
size_list = [] | |
# disable mask, it does not affect performance | |
del mask | |
for i in range(self.num_feature_levels): | |
size_list.append(x[i].shape[-2:]) | |
pos.append(self.pe_layer(x[i], None).flatten(2)) | |
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None]) | |
# flatten NxCxHxW to HWxNxC | |
pos[-1] = pos[-1].permute(2, 0, 1) | |
src[-1] = src[-1].permute(2, 0, 1) | |
_, bs, _ = src[0].shape | |
# QxNxC | |
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) | |
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) | |
predictions_class = [] | |
predictions_mask = [] | |
predictions_bbox = [] | |
predictions_caption = [] | |
predictions_captioning = [] | |
self_tgt_mask = None | |
if self.training and task == 'vlp' and self.task_switch['captioning']: | |
# output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token. | |
caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output | |
_caping_lang_embed = caping_lang_embed.detach().clone() | |
output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token. | |
caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1) | |
query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning. | |
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1) | |
elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \ | |
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']): | |
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1) | |
grounding_tokens = extra['grounding_tokens'] | |
_grounding_tokens = grounding_tokens.detach().clone() | |
# initialize with negative attention at the beginning. | |
pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1) | |
pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask | |
pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other | |
self_tgt_mask = pad_tgt_mask | |
output = torch.cat((output, output[:-1]), dim=0) | |
query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding | |
else: | |
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1) | |
# prediction heads on learnable query features | |
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task) | |
attn_mask = results["attn_mask"] | |
predictions_class.append(results["outputs_class"]) | |
predictions_mask.append(results["outputs_mask"]) | |
predictions_bbox.append(results["outputs_bbox"]) | |
predictions_caption.append(results["outputs_caption"]) | |
predictions_captioning.append(results["outputs_captionting"]) | |
for i in range(self.num_layers): | |
level_index = i % self.num_feature_levels | |
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False | |
if self.training and task == 'vlp' and self.task_switch['captioning']: | |
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1) | |
# attention: cross-attention first | |
output, avg_attn = self.transformer_cross_attention_layers[i]( | |
output, src[level_index], | |
memory_mask=attn_mask, | |
memory_key_padding_mask=None, # here we do not apply masking on padded region | |
pos=pos[level_index], query_pos=query_embed | |
) | |
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \ | |
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']): | |
output = torch.cat((output, _grounding_tokens), dim=0) | |
query_embed = torch.cat((query_embed, grounding_tokens), dim=0) | |
output = self.transformer_self_attention_layers[i]( | |
output, tgt_mask=self_tgt_mask, | |
tgt_key_padding_mask=None, | |
query_pos=query_embed | |
) | |
# FFN | |
output = self.transformer_ffn_layers[i]( | |
output | |
) | |
if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \ | |
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']): | |
_grounding_tokens = output[-len(_grounding_tokens):] | |
output = output[:-len(_grounding_tokens)] | |
query_embed = query_embed[:-len(_grounding_tokens)] | |
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task) | |
attn_mask = results["attn_mask"] | |
predictions_class.append(results["outputs_class"]) | |
predictions_mask.append(results["outputs_mask"]) | |
predictions_bbox.append(results["outputs_bbox"]) | |
predictions_caption.append(results["outputs_caption"]) | |
predictions_captioning.append(results["outputs_captionting"]) | |
assert len(predictions_class) == self.num_layers + 1 | |
if task == 'vlp': | |
out = {'pred_captionings': predictions_captioning[-1], | |
'pred_captions': predictions_caption[-1], | |
'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]} | |
return out | |
else: | |
out = { | |
'pred_logits': predictions_class[-1], | |
'pred_masks': predictions_mask[-1], | |
'pred_boxes': predictions_bbox[-1], | |
'pred_captions': predictions_caption[-1], | |
'aux_outputs': self._set_aux_loss( | |
predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption | |
) | |
} | |
return out | |
def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}): | |
# x is a list of multi-scale feature | |
assert len(x) == self.num_feature_levels | |
src = [] | |
pos = [] | |
size_list = [] | |
# disable mask, it does not affect performance | |
del mask | |
for i in range(self.num_feature_levels): | |
size_list.append(x[i].shape[-2:]) | |
pos.append(self.pe_layer(x[i], None).flatten(2)) | |
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None]) | |
# flatten NxCxHxW to HWxNxC | |
pos[-1] = pos[-1].permute(2, 0, 1) | |
src[-1] = src[-1].permute(2, 0, 1) | |
_, bs, _ = src[0].shape | |
# QxNxC | |
query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) | |
query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) | |
caping_lang_token = extra['start_token'].repeat(bs, 1) | |
start_id = 0 | |
if 'token' in extra: | |
caping_lang_token[:,:len(extra['token'][0])] = extra['token'] | |
start_id = len(extra['token'][0])-1 | |
# query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1) | |
pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1) | |
# prepare token embedding for evaluation | |
token_embs = self.lang_encoder.lang_encoder.token_embedding.weight | |
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7) | |
for cap_idx in range(start_id, self.captioning_step): | |
caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1) | |
output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token. | |
caping_lang_embed += pos_embed_caping | |
query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning. | |
# output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token. | |
# prediction heads on learnable query features | |
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task) | |
attn_mask = results["attn_mask"] | |
for i in range(self.num_layers): | |
level_index = i % self.num_feature_levels | |
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False | |
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1) | |
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1) | |
if extra['captioning_mask'] is not None: | |
bs,nq,wh = attn_mask.shape | |
assert bs==self.num_heads, "Only support single image referring captioning." | |
cap_mask = extra['captioning_mask'] | |
attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1]) | |
cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0] | |
attn_mask[:,self.num_queries:, cap_mask] = True | |
attn_mask = attn_mask.reshape(bs,nq,wh) | |
# attention: cross-attention first | |
output, avg_attn = self.transformer_cross_attention_layers[i]( | |
output, src[level_index], | |
memory_mask=attn_mask, | |
memory_key_padding_mask=None, # here we do not apply masking on padded region | |
pos=pos[level_index], query_pos=query_embed | |
) | |
output = self.transformer_self_attention_layers[i]( | |
output, tgt_mask=self_tgt_mask, | |
tgt_key_padding_mask=None, | |
query_pos=query_embed | |
) | |
# FFN | |
output = self.transformer_ffn_layers[i]( | |
output | |
) | |
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task) | |
attn_mask = results["attn_mask"] | |
pred_captions_gen = results['outputs_captionting'] | |
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7) | |
pred_captions_gen = pred_captions_gen @ token_embs.t() | |
caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1] | |
texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False) | |
texts_new = [] | |
for x in texts: | |
x = x.split('<|endoftext|>')[0] | |
x = x.replace('<|endoftext|>','') | |
x = x.replace('<|startoftext|>','') | |
x = x.strip() | |
texts_new.append(x) | |
out = {'pred_captionings': caping_lang_token, | |
'pred_texts': texts_new} | |
return out | |
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'): | |
decoder_output = self.decoder_norm(output) | |
decoder_output = decoder_output.transpose(0, 1) | |
# extract image captioning token from decoder output. | |
if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'): | |
outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed | |
else: | |
outputs_captionting = None | |
# recompute class token output. | |
norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7) | |
obj_token = norm_decoder_output[:,:self.num_queries-1] | |
cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries] | |
sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token. | |
cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True) | |
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \ | |
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']): | |
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1) | |
else: | |
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1) | |
# compute class, mask and bbox. | |
class_embed = decoder_output @ self.class_embed | |
# HACK do not compute similarity if mask is not on | |
outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage'))) | |
if self.task_switch['mask'] or self.task_switch['openimage']['mask']: | |
mask_embed = self.mask_embed(decoder_output) | |
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) | |
# NOTE: prediction is of higher-resolution | |
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW] | |
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False) | |
# must use bool type | |
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. | |
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool() | |
attn_mask = attn_mask.detach() | |
# NOTE: fill False for cls token (JY) | |
attn_mask[:, self.num_queries:self.num_queries+1].fill_(False) | |
else: | |
outputs_mask = None | |
attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool() | |
outputs_bbox = [None for i in range(len(decoder_output))] | |
if self.task_switch['bbox']: | |
outputs_bbox = self.bbox_embed(decoder_output) | |
outputs_caption = None | |
if self.task_switch['caption']: | |
outputs_caption = class_embed | |
results = { | |
"outputs_class": outputs_class, | |
"outputs_mask": outputs_mask, | |
"outputs_bbox": outputs_bbox, | |
"attn_mask": attn_mask, | |
"outputs_caption": outputs_caption, | |
"outputs_captionting": outputs_captionting, | |
} | |
return results | |
def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
if self.mask_classification: | |
return [ | |
{"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d} | |
for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1]) | |
] | |
else: | |
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]] | |
def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra): | |
return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra) |