Spaces:
Paused
Paused
# -------------------------------------------------------- | |
# FocalNet for Semantic Segmentation | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Jianwei Yang | |
# -------------------------------------------------------- | |
import math | |
import time | |
import numpy as np | |
import logging | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
from detectron2.utils.file_io import PathManager | |
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec | |
from .registry import register_backbone | |
logger = logging.getLogger(__name__) | |
class Mlp(nn.Module): | |
""" Multilayer perceptron.""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class FocalModulation(nn.Module): | |
""" Focal Modulation | |
Args: | |
dim (int): Number of input channels. | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
focal_level (int): Number of focal levels | |
focal_window (int): Focal window size at focal level 1 | |
focal_factor (int, default=2): Step to increase the focal window | |
use_postln (bool, default=False): Whether use post-modulation layernorm | |
""" | |
def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False): | |
super().__init__() | |
self.dim = dim | |
# specific args for focalv3 | |
self.focal_level = focal_level | |
self.focal_window = focal_window | |
self.focal_factor = focal_factor | |
self.use_postln_in_modulation = use_postln_in_modulation | |
self.scaling_modulator = scaling_modulator | |
self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True) | |
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True) | |
self.act = nn.GELU() | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.focal_layers = nn.ModuleList() | |
if self.use_postln_in_modulation: | |
self.ln = nn.LayerNorm(dim) | |
for k in range(self.focal_level): | |
kernel_size = self.focal_factor*k + self.focal_window | |
self.focal_layers.append( | |
nn.Sequential( | |
nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, | |
padding=kernel_size//2, bias=False), | |
nn.GELU(), | |
) | |
) | |
def forward(self, x): | |
""" Forward function. | |
Args: | |
x: input features with shape of (B, H, W, C) | |
""" | |
B, nH, nW, C = x.shape | |
x = self.f(x) | |
x = x.permute(0, 3, 1, 2).contiguous() | |
q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1) | |
ctx_all = 0 | |
for l in range(self.focal_level): | |
ctx = self.focal_layers[l](ctx) | |
ctx_all = ctx_all + ctx*gates[:, l:l+1] | |
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) | |
ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:] | |
if self.scaling_modulator: | |
ctx_all = ctx_all / (self.focal_level + 1) | |
x_out = q * self.h(ctx_all) | |
x_out = x_out.permute(0, 2, 3, 1).contiguous() | |
if self.use_postln_in_modulation: | |
x_out = self.ln(x_out) | |
x_out = self.proj(x_out) | |
x_out = self.proj_drop(x_out) | |
return x_out | |
class FocalModulationBlock(nn.Module): | |
""" Focal Modulation Block. | |
Args: | |
dim (int): Number of input channels. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
focal_level (int): number of focal levels | |
focal_window (int): focal kernel size at level 1 | |
""" | |
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm, | |
focal_level=2, focal_window=9, | |
use_postln=False, use_postln_in_modulation=False, | |
scaling_modulator=False, | |
use_layerscale=False, | |
layerscale_value=1e-4): | |
super().__init__() | |
self.dim = dim | |
self.mlp_ratio = mlp_ratio | |
self.focal_window = focal_window | |
self.focal_level = focal_level | |
self.use_postln = use_postln | |
self.use_layerscale = use_layerscale | |
self.norm1 = norm_layer(dim) | |
self.modulation = FocalModulation( | |
dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.H = None | |
self.W = None | |
self.gamma_1 = 1.0 | |
self.gamma_2 = 1.0 | |
if self.use_layerscale: | |
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) | |
def forward(self, x): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
""" | |
B, L, C = x.shape | |
H, W = self.H, self.W | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
if not self.use_postln: | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# FM | |
x = self.modulation(x).view(B, H * W, C) | |
if self.use_postln: | |
x = self.norm1(x) | |
# FFN | |
x = shortcut + self.drop_path(self.gamma_1 * x) | |
if self.use_postln: | |
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class BasicLayer(nn.Module): | |
""" A basic focal modulation layer for one stage. | |
Args: | |
dim (int): Number of feature channels | |
depth (int): Depths of this stage. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
focal_level (int): Number of focal levels | |
focal_window (int): Focal window size at focal level 1 | |
use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
""" | |
def __init__(self, | |
dim, | |
depth, | |
mlp_ratio=4., | |
drop=0., | |
drop_path=0., | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
focal_window=9, | |
focal_level=2, | |
use_conv_embed=False, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
scaling_modulator=False, | |
use_layerscale=False, | |
use_checkpoint=False | |
): | |
super().__init__() | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
FocalModulationBlock( | |
dim=dim, | |
mlp_ratio=mlp_ratio, | |
drop=drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
focal_window=focal_window, | |
focal_level=focal_level, | |
use_postln=use_postln, | |
use_postln_in_modulation=use_postln_in_modulation, | |
scaling_modulator=scaling_modulator, | |
use_layerscale=use_layerscale, | |
norm_layer=norm_layer) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
patch_size=2, | |
in_chans=dim, embed_dim=2*dim, | |
use_conv_embed=use_conv_embed, | |
norm_layer=norm_layer, | |
is_stem=False | |
) | |
else: | |
self.downsample = None | |
def forward(self, x, H, W): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
""" | |
for blk in self.blocks: | |
blk.H, blk.W = H, W | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W) | |
x_down = self.downsample(x_reshaped) | |
x_down = x_down.flatten(2).transpose(1, 2) | |
Wh, Ww = (H + 1) // 2, (W + 1) // 2 | |
return x, H, W, x_down, Wh, Ww | |
else: | |
return x, H, W, x, H, W | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
Args: | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False | |
is_stem (bool): Is the stem block or not. | |
""" | |
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False): | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
if use_conv_embed: | |
# if we choose to use conv embedding, then we treat the stem and non-stem differently | |
if is_stem: | |
kernel_size = 7; padding = 2; stride = 4 | |
else: | |
kernel_size = 3; padding = 1; stride = 2 | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) | |
else: | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
_, _, H, W = x.size() | |
if W % self.patch_size[1] != 0: | |
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) | |
if H % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) | |
x = self.proj(x) # B C Wh Ww | |
if self.norm is not None: | |
Wh, Ww = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) | |
return x | |
class FocalNet(nn.Module): | |
""" FocalNet backbone. | |
Args: | |
pretrain_img_size (int): Input image size for training the pretrained model, | |
used in absolute postion embedding. Default 224. | |
patch_size (int | tuple(int)): Patch size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
depths (tuple[int]): Depths of each Swin Transformer stage. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
drop_rate (float): Dropout rate. | |
drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True. | |
out_indices (Sequence[int]): Output from which stages. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
focal_levels (Sequence[int]): Number of focal levels at four stages | |
focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages | |
use_conv_embed (bool): Whether use overlapped convolution for patch embedding | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__(self, | |
pretrain_img_size=1600, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
mlp_ratio=4., | |
drop_rate=0., | |
drop_path_rate=0.2, | |
norm_layer=nn.LayerNorm, | |
patch_norm=True, | |
out_indices=[0, 1, 2, 3], | |
frozen_stages=-1, | |
focal_levels=[2,2,2,2], | |
focal_windows=[9,9,9,9], | |
use_conv_embed=False, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
scaling_modulator=False, | |
use_layerscale=False, | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.pretrain_img_size = pretrain_img_size | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.patch_norm = patch_norm | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None, | |
use_conv_embed=use_conv_embed, is_stem=True) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(embed_dim * 2 ** i_layer), | |
depth=depths[i_layer], | |
mlp_ratio=mlp_ratio, | |
drop=drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, | |
focal_window=focal_windows[i_layer], | |
focal_level=focal_levels[i_layer], | |
use_conv_embed=use_conv_embed, | |
use_postln=use_postln, | |
use_postln_in_modulation=use_postln_in_modulation, | |
scaling_modulator=scaling_modulator, | |
use_layerscale=use_layerscale, | |
use_checkpoint=use_checkpoint) | |
self.layers.append(layer) | |
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] | |
self.num_features = num_features | |
# add a norm layer for each output | |
for i_layer in out_indices: | |
layer = norm_layer(num_features[i_layer]) | |
layer_name = f'norm{i_layer}' | |
self.add_module(layer_name, layer) | |
self._freeze_stages() | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
if self.frozen_stages >= 2: | |
self.pos_drop.eval() | |
for i in range(0, self.frozen_stages - 1): | |
m = self.layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def init_weights(self, pretrained=None): | |
"""Initialize the weights in backbone. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
def _init_weights(m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
if isinstance(pretrained, str): | |
self.apply(_init_weights) | |
logger = get_root_logger() | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
self.apply(_init_weights) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True): | |
model_dict = self.state_dict() | |
missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict] | |
logger.info(f'=> Missed keys {missed_dict}') | |
unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict] | |
logger.info(f'=> Unexpected keys {unexpected_dict}') | |
pretrained_dict = { | |
k: v for k, v in pretrained_dict.items() | |
if k in model_dict.keys() | |
} | |
need_init_state_dict = {} | |
for k, v in pretrained_dict.items(): | |
need_init = ( | |
( | |
k.split('.')[0] in pretrained_layers | |
or pretrained_layers[0] == '*' | |
) | |
and 'relative_position_index' not in k | |
and 'attn_mask' not in k | |
) | |
if need_init: | |
# if verbose: | |
# logger.info(f'=> init {k} from {pretrained}') | |
if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size(): | |
table_pretrained = v | |
table_current = model_dict[k] | |
fsize1 = table_pretrained.shape[2] | |
fsize2 = table_current.shape[2] | |
# NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv | |
if fsize1 < fsize2: | |
table_pretrained_resized = torch.zeros(table_current.shape) | |
table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained | |
v = table_pretrained_resized | |
elif fsize1 > fsize2: | |
table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2] | |
v = table_pretrained_resized | |
if ("modulation.f" in k or "pre_conv" in k): | |
table_pretrained = v | |
table_current = model_dict[k] | |
if table_pretrained.shape != table_current.shape: | |
if len(table_pretrained.shape) == 2: | |
dim = table_pretrained.shape[1] | |
assert table_current.shape[1] == dim | |
L1 = table_pretrained.shape[0] | |
L2 = table_current.shape[0] | |
if L1 < L2: | |
table_pretrained_resized = torch.zeros(table_current.shape) | |
# copy for linear project | |
table_pretrained_resized[:2*dim] = table_pretrained[:2*dim] | |
# copy for global token gating | |
table_pretrained_resized[-1] = table_pretrained[-1] | |
# copy for first multiple focal levels | |
table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] | |
# reassign pretrained weights | |
v = table_pretrained_resized | |
elif L1 > L2: | |
raise NotImplementedError | |
elif len(table_pretrained.shape) == 1: | |
dim = table_pretrained.shape[0] | |
L1 = table_pretrained.shape[0] | |
L2 = table_current.shape[0] | |
if L1 < L2: | |
table_pretrained_resized = torch.zeros(table_current.shape) | |
# copy for linear project | |
table_pretrained_resized[:dim] = table_pretrained[:dim] | |
# copy for global token gating | |
table_pretrained_resized[-1] = table_pretrained[-1] | |
# copy for first multiple focal levels | |
# table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] | |
# reassign pretrained weights | |
v = table_pretrained_resized | |
elif L1 > L2: | |
raise NotImplementedError | |
need_init_state_dict[k] = v | |
self.load_state_dict(need_init_state_dict, strict=False) | |
def forward(self, x): | |
"""Forward function.""" | |
tic = time.time() | |
x = self.patch_embed(x) | |
Wh, Ww = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.pos_drop(x) | |
outs = {} | |
for i in range(self.num_layers): | |
layer = self.layers[i] | |
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
x_out = norm_layer(x_out) | |
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() | |
outs["res{}".format(i + 2)] = out | |
if len(self.out_indices) == 0: | |
outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() | |
toc = time.time() | |
return outs | |
def train(self, mode=True): | |
"""Convert the model into training mode while keep layers freezed.""" | |
super(FocalNet, self).train(mode) | |
self._freeze_stages() | |
class D2FocalNet(FocalNet, Backbone): | |
def __init__(self, cfg, input_shape): | |
pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE'] | |
patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE'] | |
in_chans = 3 | |
embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM'] | |
depths = cfg['BACKBONE']['FOCAL']['DEPTHS'] | |
mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO'] | |
drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE'] | |
drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE'] | |
norm_layer = nn.LayerNorm | |
patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM'] | |
use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT'] | |
out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES'] | |
scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False) | |
super().__init__( | |
pretrain_img_size, | |
patch_size, | |
in_chans, | |
embed_dim, | |
depths, | |
mlp_ratio, | |
drop_rate, | |
drop_path_rate, | |
norm_layer, | |
patch_norm, | |
out_indices, | |
focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'], | |
focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'], | |
use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'], | |
use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'], | |
use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'], | |
scaling_modulator=scaling_modulator, | |
use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'], | |
use_checkpoint=use_checkpoint, | |
) | |
self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES'] | |
self._out_feature_strides = { | |
"res2": 4, | |
"res3": 8, | |
"res4": 16, | |
"res5": 32, | |
} | |
self._out_feature_channels = { | |
"res2": self.num_features[0], | |
"res3": self.num_features[1], | |
"res4": self.num_features[2], | |
"res5": self.num_features[3], | |
} | |
def forward(self, x): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: names and the corresponding features | |
""" | |
assert ( | |
x.dim() == 4 | |
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" | |
outputs = {} | |
y = super().forward(x) | |
for k in y.keys(): | |
if k in self._out_features: | |
outputs[k] = y[k] | |
return outputs | |
def output_shape(self): | |
return { | |
name: ShapeSpec( | |
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] | |
) | |
for name in self._out_features | |
} | |
def size_divisibility(self): | |
return 32 | |
def get_focal_backbone(cfg): | |
focal = D2FocalNet(cfg['MODEL'], 224) | |
if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: | |
filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] | |
logger.info(f'=> init from {filename}') | |
with PathManager.open(filename, "rb") as f: | |
ckpt = torch.load(f)['model'] | |
focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) | |
return focal |