Spaces:
Sleeping
Sleeping
import gradio as gr | |
import huggingface_hub | |
import os | |
import subprocess | |
import threading | |
# download model | |
huggingface_hub.snapshot_download( | |
repo_id='ariesssxu/vta-ldm-clip4clip-v-large', | |
local_dir='./ckpt/vta-ldm-clip4clip-v-large' | |
) | |
def stream_output(pipe): | |
for line in iter(pipe.readline, ''): | |
print(line, end='') | |
def print_directory_contents(path): | |
for root, dirs, files in os.walk(path): | |
level = root.replace(path, '').count(os.sep) | |
indent = ' ' * 4 * (level) | |
print(f"{indent}{os.path.basename(root)}/") | |
subindent = ' ' * 4 * (level + 1) | |
for f in files: | |
print(f"{subindent}{f}") | |
# Print the ckpt directory contents | |
print_directory_contents('./ckpt') | |
def get_wav_files(path): | |
wav_files = [] # Initialize an empty list to store the paths of .wav files | |
for root, dirs, files in os.walk(path): | |
level = root.replace(path, '').count(os.sep) | |
indent = ' ' * 4 * (level) | |
print(f"{indent}{os.path.basename(root)}/") | |
subindent = ' ' * 4 * (level + 1) | |
for f in files: | |
file_path = os.path.join(root, f) | |
if f.lower().endswith('.wav'): | |
wav_files.append(file_path) # Add .wav file paths to the list | |
print(f"{subindent}{file_path}") | |
else: | |
print(f"{subindent}{f}") | |
return wav_files # Return the list of .wav file paths | |
def check_outputs_folder(folder_path): | |
# Check if the folder exists | |
if os.path.exists(folder_path) and os.path.isdir(folder_path): | |
# Delete all contents inside the folder | |
for filename in os.listdir(folder_path): | |
file_path = os.path.join(folder_path, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) # Remove file or link | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) # Remove directory | |
except Exception as e: | |
print(f'Failed to delete {file_path}. Reason: {e}') | |
else: | |
print(f'The folder {folder_path} does not exist.') | |
def infer(video_in): | |
# check if 'outputs' dir exists and empty it if necessary | |
check_outputs_folder('./outputs/tmp') | |
# Need to find path to gradio temp vid from video input | |
print(f"VIDEO IN PATH: {video_in}") | |
# Get the directory name | |
folder_path = os.path.dirname(video_in) | |
# Execute the inference command | |
command = ['python', 'inference_from_video.py', '--original_args', 'ckpt/vta-ldm-clip4clip-v-large/summary.jsonl', '--model', 'ckpt/vta-ldm-clip4clip-v-large/pytorch_model_2.bin', '--data_path', folder_path] | |
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1) | |
# Create threads to handle stdout and stderr | |
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,)) | |
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,)) | |
# Start the threads | |
stdout_thread.start() | |
stderr_thread.start() | |
# Wait for the process to complete and the threads to finish | |
process.wait() | |
stdout_thread.join() | |
stderr_thread.join() | |
print("Inference script finished with return code:", process.returncode) | |
# Need to find where are the results stored, default should be "./outputs/tmp" | |
# Print the outputs directory contents | |
print_directory_contents('./outputs/tmp') | |
wave_files = get_wav_files('./outputs/tmp') | |
print(wave_files) | |
return wave_files[0] | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Video-To-Audio") | |
video_in = gr.Video(label='Video IN') | |
submit_btn = gr.Button("Submit") | |
output_sound = gr.Audio(label="Audio OUT") | |
#output_sound = gr.Textbox(label="Audio OUT") | |
submit_btn.click( | |
fn = infer, | |
inputs = [video_in], | |
outputs = [output_sound], | |
show_api = False | |
) | |
demo.launch(show_api=False, show_error=True) |