vta-ldm / app.py
fffiloni's picture
Update app.py
ae4e904 verified
raw
history blame
4.09 kB
import gradio as gr
import huggingface_hub
import os
import subprocess
import threading
# download model
huggingface_hub.snapshot_download(
repo_id='ariesssxu/vta-ldm-clip4clip-v-large',
local_dir='./ckpt/vta-ldm-clip4clip-v-large'
)
def stream_output(pipe):
for line in iter(pipe.readline, ''):
print(line, end='')
def print_directory_contents(path):
for root, dirs, files in os.walk(path):
level = root.replace(path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
# Print the ckpt directory contents
print_directory_contents('./ckpt')
def get_wav_files(path):
wav_files = [] # Initialize an empty list to store the paths of .wav files
for root, dirs, files in os.walk(path):
level = root.replace(path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
file_path = os.path.join(root, f)
if f.lower().endswith('.wav'):
wav_files.append(file_path) # Add .wav file paths to the list
print(f"{subindent}{file_path}")
else:
print(f"{subindent}{f}")
return wav_files # Return the list of .wav file paths
def check_outputs_folder(folder_path):
# Check if the folder exists
if os.path.exists(folder_path) and os.path.isdir(folder_path):
# Delete all contents inside the folder
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
else:
print(f'The folder {folder_path} does not exist.')
def infer(video_in):
# check if 'outputs' dir exists and empty it if necessary
check_outputs_folder('./outputs/tmp')
# Need to find path to gradio temp vid from video input
print(f"VIDEO IN PATH: {video_in}")
# Get the directory name
folder_path = os.path.dirname(video_in)
# Execute the inference command
command = ['python', 'inference_from_video.py', '--original_args', 'ckpt/vta-ldm-clip4clip-v-large/summary.jsonl', '--model', 'ckpt/vta-ldm-clip4clip-v-large/pytorch_model_2.bin', '--data_path', folder_path]
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
# Create threads to handle stdout and stderr
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,))
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,))
# Start the threads
stdout_thread.start()
stderr_thread.start()
# Wait for the process to complete and the threads to finish
process.wait()
stdout_thread.join()
stderr_thread.join()
print("Inference script finished with return code:", process.returncode)
# Need to find where are the results stored, default should be "./outputs/tmp"
# Print the outputs directory contents
print_directory_contents('./outputs/tmp')
wave_files = get_wav_files('./outputs/tmp')
print(wave_files)
return wave_files[0]
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Video-To-Audio")
video_in = gr.Video(label='Video IN')
submit_btn = gr.Button("Submit")
output_sound = gr.Audio(label="Audio OUT")
#output_sound = gr.Textbox(label="Audio OUT")
submit_btn.click(
fn = infer,
inputs = [video_in],
outputs = [output_sound],
show_api = False
)
demo.launch(show_api=False, show_error=True)