Spaces:
Running
on
A10G
Running
on
A10G
tts x hallo ui integration
Browse files
app.py
CHANGED
@@ -13,9 +13,15 @@ import uuid
|
|
13 |
|
14 |
is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False
|
15 |
|
|
|
|
|
16 |
if(not is_shared_ui):
|
17 |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
|
18 |
|
|
|
|
|
|
|
|
|
19 |
def is_mp3(file_path):
|
20 |
try:
|
21 |
audio = MP3(file_path)
|
@@ -31,7 +37,7 @@ def convert_mp3_to_wav(mp3_file_path, wav_file_path):
|
|
31 |
return wav_file_path
|
32 |
|
33 |
|
34 |
-
def trim_audio(file_path, output_path, max_duration
|
35 |
# Load the audio file
|
36 |
audio = AudioSegment.from_wav(file_path)
|
37 |
|
@@ -72,100 +78,140 @@ def check_mp3(file_path):
|
|
72 |
else:
|
73 |
print("The file is not an MP3 file.")
|
74 |
|
75 |
-
return file_path
|
76 |
-
|
77 |
-
def convert_webp_to_png(webp_file):
|
78 |
-
|
79 |
-
# Open the WebP image
|
80 |
-
webp_image = Image.open(webp_file)
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
|
|
|
|
86 |
|
87 |
def generate_portrait(prompt_image):
|
88 |
if prompt_image is None or prompt_image == "":
|
89 |
raise gr.Error("Can't generate a portrait without a prompt !")
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
|
|
101 |
if prompt_audio is None or prompt_audio == "" :
|
102 |
-
raise gr.Error("Can't generate a voice without text to synthetize !")
|
103 |
if voice_description is None or voice_description == "":
|
104 |
gr.Info(
|
105 |
"For better control, You may want to provide a voice character description next time.",
|
106 |
duration = 10,
|
107 |
visible = True
|
108 |
)
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
result = client.predict(
|
111 |
-
text=prompt_audio,
|
112 |
-
description=voice_description,
|
113 |
-
api_name="/gen_tts"
|
114 |
)
|
115 |
print(result)
|
116 |
-
return result
|
117 |
|
118 |
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
|
119 |
-
|
|
|
|
|
|
|
|
|
120 |
result = client.predict(
|
121 |
-
multilingual_text=prompt_audio_whisperspeech,
|
122 |
-
speaker_audio=handle_file(audio_to_clone),
|
123 |
-
speaker_url="",
|
124 |
-
cps=14,
|
125 |
-
api_name="/whisper_speech_demo"
|
126 |
)
|
127 |
print(result)
|
128 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
|
131 |
-
|
132 |
-
raise gr.Error("This Space only works in duplicated instances")
|
133 |
-
|
134 |
unique_id = uuid.uuid4()
|
135 |
|
136 |
args = argparse.Namespace(
|
137 |
-
config='configs/inference/default.yaml',
|
138 |
-
source_image=source_image,
|
139 |
-
driving_audio=driving_audio,
|
140 |
-
output=f'output-{unique_id}.mp4',
|
141 |
-
pose_weight=1.0,
|
142 |
-
face_weight=1.0,
|
143 |
-
lip_weight=1.0,
|
144 |
-
face_expand_ratio=1.2,
|
145 |
-
checkpoint=None
|
146 |
)
|
147 |
|
148 |
inference_process(args)
|
149 |
return f'output-{unique_id}.mp4'
|
150 |
|
151 |
-
def generate_talking_portrait(portrait, voice):
|
152 |
|
153 |
if portrait is None:
|
154 |
raise gr.Error("Please provide a portrait to animate.")
|
|
|
155 |
if voice is None:
|
156 |
raise gr.Error("Please provide audio (4 seconds max).")
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
164 |
ready_audio = add_silence_to_wav(voice)
|
165 |
print(f"1 second of silence added to {voice}")
|
166 |
|
167 |
-
#
|
168 |
talking_portrait_vid = run_hallo(portrait, ready_audio)
|
|
|
169 |
return talking_portrait_vid
|
170 |
|
171 |
|
@@ -173,6 +219,9 @@ css = '''
|
|
173 |
#col-container {
|
174 |
margin: 0 auto;
|
175 |
}
|
|
|
|
|
|
|
176 |
#main-group {
|
177 |
background-color: none;
|
178 |
}
|
@@ -188,8 +237,17 @@ css = '''
|
|
188 |
#audio-block, #audio-clone-elm {
|
189 |
flex: 1;
|
190 |
}
|
191 |
-
#
|
192 |
-
height: 180px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
}
|
194 |
#audio-column, #result-column {
|
195 |
display: flex;
|
@@ -203,6 +261,9 @@ css = '''
|
|
203 |
#main-submit{
|
204 |
flex: 1;
|
205 |
}
|
|
|
|
|
|
|
206 |
div#warning-ready {
|
207 |
background-color: #ecfdf5;
|
208 |
padding: 0 16px 16px;
|
@@ -242,76 +303,138 @@ div#warning-duplicate .actions a {
|
|
242 |
with gr.Blocks(css=css) as demo:
|
243 |
with gr.Column(elem_id="col-container"):
|
244 |
gr.Markdown("""
|
245 |
-
#
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
247 |
""")
|
|
|
|
|
|
|
|
|
248 |
with gr.Group(elem_id="main-group"):
|
249 |
with gr.Row():
|
250 |
with gr.Column():
|
|
|
251 |
portrait = gr.Image(
|
252 |
-
sources=["upload"],
|
253 |
-
type="filepath",
|
254 |
-
format="png",
|
255 |
-
elem_id="image-block"
|
256 |
)
|
257 |
|
258 |
prompt_image = gr.Textbox(
|
259 |
-
label="Generate image",
|
260 |
-
lines=
|
|
|
261 |
)
|
262 |
|
263 |
gen_image_btn = gr.Button("Generate portrait (optional)")
|
264 |
|
265 |
with gr.Column(elem_id="audio-column"):
|
|
|
266 |
voice = gr.Audio(
|
267 |
-
type="filepath",
|
268 |
-
|
269 |
-
elem_id="audio-block"
|
270 |
)
|
271 |
|
|
|
|
|
|
|
272 |
with gr.Tab("Parler TTS", elem_id="parler-tab"):
|
273 |
|
274 |
prompt_audio = gr.Textbox(
|
275 |
-
label="Text to synthetize",
|
276 |
-
lines=
|
277 |
-
max_lines=
|
278 |
-
elem_id="text-synth"
|
279 |
)
|
280 |
|
281 |
voice_description = gr.Textbox(
|
282 |
-
label="Voice description",
|
283 |
-
lines=
|
284 |
-
max_lines=
|
285 |
-
elem_id="voice-desc"
|
286 |
)
|
287 |
|
288 |
gen_voice_btn = gr.Button("Generate voice (optional)")
|
289 |
|
290 |
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
|
291 |
prompt_audio_whisperspeech = gr.Textbox(
|
292 |
-
label="Text to synthetize",
|
293 |
-
lines=
|
294 |
-
max_lines=
|
295 |
-
elem_id="text-synth-wsp"
|
296 |
)
|
297 |
audio_to_clone = gr.Audio(
|
298 |
-
label="Voice to clone",
|
299 |
-
type="filepath",
|
300 |
-
elem_id="audio-clone-elm"
|
301 |
)
|
302 |
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
|
303 |
|
304 |
with gr.Column(elem_id="result-column"):
|
|
|
305 |
result = gr.Video(
|
306 |
elem_id="video-block"
|
307 |
)
|
308 |
|
309 |
-
submit_btn = gr.Button("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
voice.upload(
|
312 |
fn = check_mp3,
|
313 |
inputs = [voice],
|
314 |
-
outputs = [voice],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
queue = False,
|
316 |
show_api = False
|
317 |
)
|
@@ -320,23 +443,23 @@ with gr.Blocks(css=css) as demo:
|
|
320 |
fn = generate_portrait,
|
321 |
inputs = [prompt_image],
|
322 |
outputs = [portrait],
|
323 |
-
queue=False,
|
324 |
show_api = False
|
325 |
)
|
326 |
|
327 |
gen_voice_btn.click(
|
328 |
-
fn =
|
329 |
inputs = [prompt_audio, voice_description],
|
330 |
-
outputs = [voice],
|
331 |
-
queue=False,
|
332 |
show_api = False
|
333 |
)
|
334 |
|
335 |
gen_wsp_voice_btn.click(
|
336 |
fn = get_whisperspeech,
|
337 |
inputs = [prompt_audio_whisperspeech, audio_to_clone],
|
338 |
-
outputs = [voice],
|
339 |
-
queue=False,
|
340 |
show_api = False
|
341 |
)
|
342 |
|
|
|
13 |
|
14 |
is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False
|
15 |
|
16 |
+
AUDIO_MAX_DURATION = 4000
|
17 |
+
|
18 |
if(not is_shared_ui):
|
19 |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
|
20 |
|
21 |
+
#############
|
22 |
+
# UTILITIES #
|
23 |
+
#############
|
24 |
+
|
25 |
def is_mp3(file_path):
|
26 |
try:
|
27 |
audio = MP3(file_path)
|
|
|
37 |
return wav_file_path
|
38 |
|
39 |
|
40 |
+
def trim_audio(file_path, output_path, max_duration):
|
41 |
# Load the audio file
|
42 |
audio = AudioSegment.from_wav(file_path)
|
43 |
|
|
|
78 |
else:
|
79 |
print("The file is not an MP3 file.")
|
80 |
|
81 |
+
return file_path, gr.update(value=file_path, visible=True)
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
def check_and_convert_webp_to_png(input_path, output_path):
|
84 |
+
try:
|
85 |
+
# Open the image file
|
86 |
+
with Image.open(input_path) as img:
|
87 |
+
# Check if the image is in WebP format
|
88 |
+
if img.format == 'WEBP':
|
89 |
+
# Convert and save as PNG
|
90 |
+
img.save(output_path, 'PNG')
|
91 |
+
print(f"Converted {input_path} to {output_path}")
|
92 |
+
return output_path
|
93 |
+
else:
|
94 |
+
print(f"The file {input_path} is not in WebP format.")
|
95 |
+
return input_path
|
96 |
+
except IOError:
|
97 |
+
print(f"Cannot open {input_path}. The file might not exist or is not an image.")
|
98 |
+
|
99 |
+
def clear_audio_elms():
|
100 |
+
return gr.update(value=None, visible=False)
|
101 |
|
102 |
+
#######################################################
|
103 |
+
# Gradio APIs for optional image and voice generation #
|
104 |
+
#######################################################
|
105 |
|
106 |
def generate_portrait(prompt_image):
|
107 |
if prompt_image is None or prompt_image == "":
|
108 |
raise gr.Error("Can't generate a portrait without a prompt !")
|
109 |
+
|
110 |
+
try:
|
111 |
+
client = Client("ByteDance/SDXL-Lightning")
|
112 |
+
except:
|
113 |
+
raise gr.Error(f"ByteDance/SDXL-Lightning space's api might not be ready, please wait, or upload an image instead.")
|
114 |
+
|
115 |
+
try:
|
116 |
+
result = client.predict(
|
117 |
+
prompt = prompt_image,
|
118 |
+
ckpt = "4-Step",
|
119 |
+
api_name = "/generate_image"
|
120 |
+
)
|
121 |
+
print(result)
|
122 |
|
123 |
+
# convert to png if necessary
|
124 |
+
input_file = result
|
125 |
+
output_file = "converted_to_png_portrait.png"
|
126 |
+
ready_png = check_and_convert_webp_to_png(input_file, output_file)
|
127 |
+
print(f"PORTRAIT PNG FILE: {ready_png}")
|
128 |
|
129 |
+
return ready_png
|
130 |
+
|
131 |
+
def generate_voice_with_parler(prompt_audio, voice_description):
|
132 |
if prompt_audio is None or prompt_audio == "" :
|
133 |
+
raise gr.Error(f"Can't generate a voice without text to synthetize !")
|
134 |
if voice_description is None or voice_description == "":
|
135 |
gr.Info(
|
136 |
"For better control, You may want to provide a voice character description next time.",
|
137 |
duration = 10,
|
138 |
visible = True
|
139 |
)
|
140 |
+
try:
|
141 |
+
client = Client("parler-tts/parler_tts_mini")
|
142 |
+
except:
|
143 |
+
raise gr.Error(f"parler-tts/parler_tts_mini space's api might not be ready, please wait, or upload an audio instead.")
|
144 |
+
|
145 |
result = client.predict(
|
146 |
+
text = prompt_audio,
|
147 |
+
description = voice_description,
|
148 |
+
api_name = "/gen_tts"
|
149 |
)
|
150 |
print(result)
|
151 |
+
return result, gr.update(value=result, visible=True)
|
152 |
|
153 |
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
|
154 |
+
try:
|
155 |
+
client = Client("collabora/WhisperSpeech")
|
156 |
+
except:
|
157 |
+
raise gr.Error(f"collabora/WhisperSpeech space's api might not be ready, please wait, or upload an audio instead.")
|
158 |
+
|
159 |
result = client.predict(
|
160 |
+
multilingual_text = prompt_audio_whisperspeech,
|
161 |
+
speaker_audio = handle_file(audio_to_clone),
|
162 |
+
speaker_url = "",
|
163 |
+
cps = 14,
|
164 |
+
api_name = "/whisper_speech_demo"
|
165 |
)
|
166 |
print(result)
|
167 |
+
return result, gr.update(value=result, visible=True)
|
168 |
+
|
169 |
+
|
170 |
+
########################
|
171 |
+
# TALKING PORTRAIT GEN #
|
172 |
+
########################
|
173 |
|
174 |
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
|
175 |
+
|
|
|
|
|
176 |
unique_id = uuid.uuid4()
|
177 |
|
178 |
args = argparse.Namespace(
|
179 |
+
config = 'configs/inference/default.yaml',
|
180 |
+
source_image = source_image,
|
181 |
+
driving_audio = driving_audio,
|
182 |
+
output = f'output-{unique_id}.mp4',
|
183 |
+
pose_weight = 1.0,
|
184 |
+
face_weight = 1.0,
|
185 |
+
lip_weight = 1.0,
|
186 |
+
face_expand_ratio = 1.2,
|
187 |
+
checkpoint = None
|
188 |
)
|
189 |
|
190 |
inference_process(args)
|
191 |
return f'output-{unique_id}.mp4'
|
192 |
|
193 |
+
def generate_talking_portrait(portrait, voice, progress=gr.Progress(track_tqdm=True)):
|
194 |
|
195 |
if portrait is None:
|
196 |
raise gr.Error("Please provide a portrait to animate.")
|
197 |
+
|
198 |
if voice is None:
|
199 |
raise gr.Error("Please provide audio (4 seconds max).")
|
200 |
|
201 |
+
if is_shared_ui :
|
202 |
+
# Trim audio to AUDIO_MAX_DURATION for better shared experience with community
|
203 |
+
input_file = voice
|
204 |
+
trimmed_output_file = "trimmed_audio.wav"
|
205 |
+
trimmed_output_file = trim_audio(input_file, trimmed_output_file, AUDIO_MAX_DURATION)
|
206 |
+
voice = trimmed_output_file
|
207 |
+
|
208 |
+
# Add 1 second of silence at the end to avoid last word being cut by hallo
|
209 |
ready_audio = add_silence_to_wav(voice)
|
210 |
print(f"1 second of silence added to {voice}")
|
211 |
|
212 |
+
# Call hallo
|
213 |
talking_portrait_vid = run_hallo(portrait, ready_audio)
|
214 |
+
|
215 |
return talking_portrait_vid
|
216 |
|
217 |
|
|
|
219 |
#col-container {
|
220 |
margin: 0 auto;
|
221 |
}
|
222 |
+
#column-names {
|
223 |
+
margin-top: 50px;
|
224 |
+
}
|
225 |
#main-group {
|
226 |
background-color: none;
|
227 |
}
|
|
|
237 |
#audio-block, #audio-clone-elm {
|
238 |
flex: 1;
|
239 |
}
|
240 |
+
div#audio-clone-elm > .audio-container > button {
|
241 |
+
height: 180px!important;
|
242 |
+
}
|
243 |
+
div#audio-clone-elm > .audio-container > button > .wrap {
|
244 |
+
font-size: 0.9em;
|
245 |
+
}
|
246 |
+
#text-synth, #voice-desc{
|
247 |
+
height: 130px;
|
248 |
+
}
|
249 |
+
#text-synth-wsp {
|
250 |
+
height: 120px;
|
251 |
}
|
252 |
#audio-column, #result-column {
|
253 |
display: flex;
|
|
|
261 |
#main-submit{
|
262 |
flex: 1;
|
263 |
}
|
264 |
+
#pro-tips {
|
265 |
+
margin-top: 50px;
|
266 |
+
}
|
267 |
div#warning-ready {
|
268 |
background-color: #ecfdf5;
|
269 |
padding: 0 16px 16px;
|
|
|
303 |
with gr.Blocks(css=css) as demo:
|
304 |
with gr.Column(elem_id="col-container"):
|
305 |
gr.Markdown("""
|
306 |
+
# TTS x Hallo Talking Portrait Generator
|
307 |
+
|
308 |
+
This demo allows you to generate a talking portrait with the help of several open-source projects: SDXL Lightning | Parler TTS | WhisperSpeech | Hallo
|
309 |
+
|
310 |
+
To let the community try and enjoy this demo, video length is limited to 4 seconds audio maximum.
|
311 |
+
|
312 |
+
Duplicate this space to skip the queue and get unlimited video duration. 4-5 seconds of audio will take ~5 minutes per inference, please be patient.
|
313 |
""")
|
314 |
+
with gr.Row(elem_id="column-names"):
|
315 |
+
gr.Markdown("## 1. Load Portrait")
|
316 |
+
gr.Markdown("## 2. Load Voice")
|
317 |
+
gr.Markdown("## 3. Result")
|
318 |
with gr.Group(elem_id="main-group"):
|
319 |
with gr.Row():
|
320 |
with gr.Column():
|
321 |
+
|
322 |
portrait = gr.Image(
|
323 |
+
sources = ["upload"],
|
324 |
+
type = "filepath",
|
325 |
+
format = "png",
|
326 |
+
elem_id = "image-block"
|
327 |
)
|
328 |
|
329 |
prompt_image = gr.Textbox(
|
330 |
+
label = "Generate image",
|
331 |
+
lines = 2,
|
332 |
+
max_lines = 2
|
333 |
)
|
334 |
|
335 |
gen_image_btn = gr.Button("Generate portrait (optional)")
|
336 |
|
337 |
with gr.Column(elem_id="audio-column"):
|
338 |
+
|
339 |
voice = gr.Audio(
|
340 |
+
type = "filepath",
|
341 |
+
elem_id = "audio-block"
|
|
|
342 |
)
|
343 |
|
344 |
+
preprocess_audio_file = gr.File(visible=False)
|
345 |
+
|
346 |
+
|
347 |
with gr.Tab("Parler TTS", elem_id="parler-tab"):
|
348 |
|
349 |
prompt_audio = gr.Textbox(
|
350 |
+
label = "Text to synthetize",
|
351 |
+
lines = 3,
|
352 |
+
max_lines = 3,
|
353 |
+
elem_id = "text-synth"
|
354 |
)
|
355 |
|
356 |
voice_description = gr.Textbox(
|
357 |
+
label = "Voice description",
|
358 |
+
lines = 3,
|
359 |
+
max_lines = 3,
|
360 |
+
elem_id = "voice-desc"
|
361 |
)
|
362 |
|
363 |
gen_voice_btn = gr.Button("Generate voice (optional)")
|
364 |
|
365 |
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
|
366 |
prompt_audio_whisperspeech = gr.Textbox(
|
367 |
+
label = "Text to synthetize",
|
368 |
+
lines = 2,
|
369 |
+
max_lines = 2,
|
370 |
+
elem_id = "text-synth-wsp"
|
371 |
)
|
372 |
audio_to_clone = gr.Audio(
|
373 |
+
label = "Voice to clone",
|
374 |
+
type = "filepath",
|
375 |
+
elem_id = "audio-clone-elm"
|
376 |
)
|
377 |
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
|
378 |
|
379 |
with gr.Column(elem_id="result-column"):
|
380 |
+
|
381 |
result = gr.Video(
|
382 |
elem_id="video-block"
|
383 |
)
|
384 |
|
385 |
+
submit_btn = gr.Button("Go talking Portrait !", elem_id="main-submit")
|
386 |
+
|
387 |
+
with gr.Row(elem_id="pro-tips"):
|
388 |
+
gr.Markdown("""
|
389 |
+
# Hallo Pro Tips:
|
390 |
+
|
391 |
+
Hallo has a few simple requirements for input data:
|
392 |
+
|
393 |
+
For the source image:
|
394 |
+
|
395 |
+
1. It should be cropped into squares.
|
396 |
+
2. The face should be the main focus, making up 50%-70% of the image.
|
397 |
+
3. The face should be facing forward, with a rotation angle of less than 30° (no side profiles).
|
398 |
+
|
399 |
+
For the driving audio:
|
400 |
+
|
401 |
+
1. It must be in WAV format.
|
402 |
+
2. It must be in English since our training datasets are only in this language.
|
403 |
+
3. Ensure the vocals are clear; background music is acceptable.
|
404 |
+
|
405 |
+
|
406 |
+
""")
|
407 |
+
|
408 |
+
gr.Markdown("""
|
409 |
+
# TTS Pro Tips:
|
410 |
+
|
411 |
+
For Parler TTS:
|
412 |
+
|
413 |
+
- Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
|
414 |
+
- Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
|
415 |
+
- The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt
|
416 |
+
|
417 |
+
For WhisperSpeech:
|
418 |
+
|
419 |
+
WhisperSpeech is able to quickly clone a voice from an audio sample.
|
420 |
+
|
421 |
+
- Upload a voice sample in the WhisperSpeech tab
|
422 |
+
- Add text to synthetize, hit Generate voice clone button
|
423 |
+
|
424 |
+
""")
|
425 |
|
426 |
voice.upload(
|
427 |
fn = check_mp3,
|
428 |
inputs = [voice],
|
429 |
+
outputs = [voice, preprocess_audio_file],
|
430 |
+
queue = False,
|
431 |
+
show_api = False
|
432 |
+
)
|
433 |
+
|
434 |
+
voice.clear(
|
435 |
+
fn = clear_audio_elms,
|
436 |
+
inputs = None,
|
437 |
+
outputs = [preprocess_audio_file],
|
438 |
queue = False,
|
439 |
show_api = False
|
440 |
)
|
|
|
443 |
fn = generate_portrait,
|
444 |
inputs = [prompt_image],
|
445 |
outputs = [portrait],
|
446 |
+
queue = False,
|
447 |
show_api = False
|
448 |
)
|
449 |
|
450 |
gen_voice_btn.click(
|
451 |
+
fn = generate_voice_with_parler,
|
452 |
inputs = [prompt_audio, voice_description],
|
453 |
+
outputs = [voice, preprocess_audio_file],
|
454 |
+
queue = False,
|
455 |
show_api = False
|
456 |
)
|
457 |
|
458 |
gen_wsp_voice_btn.click(
|
459 |
fn = get_whisperspeech,
|
460 |
inputs = [prompt_audio_whisperspeech, audio_to_clone],
|
461 |
+
outputs = [voice, preprocess_audio_file],
|
462 |
+
queue = False,
|
463 |
show_api = False
|
464 |
)
|
465 |
|