Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import argparse | |
import copy | |
from diffusers.utils import load_image, export_to_video | |
from diffusers import UNetSpatioTemporalConditionModel | |
from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline | |
from custom_diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler | |
from attn_ctrl.attention_control import (AttentionStore, | |
register_temporal_self_attention_control, | |
register_temporal_self_attention_flip_control, | |
) | |
def main(args): | |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
scheduler=noise_scheduler, | |
variant="fp16", | |
torch_dtype=torch.float16, | |
) | |
ref_unet = pipe.ori_unet | |
state_dict = pipe.unet.state_dict() | |
# computing delta w | |
finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
args.checkpoint_dir, | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
) | |
assert finetuned_unet.config.num_frames==14 | |
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid", | |
subfolder="unet", | |
variant='fp16', | |
torch_dtype=torch.float16, | |
) | |
finetuned_state_dict = finetuned_unet.state_dict() | |
ori_state_dict = ori_unet.state_dict() | |
for name, param in finetuned_state_dict.items(): | |
if 'temporal_transformer_blocks.0.attn1.to_v' in name or "temporal_transformer_blocks.0.attn1.to_out.0" in name: | |
delta_w = param - ori_state_dict[name] | |
state_dict[name] = state_dict[name] + delta_w | |
pipe.unet.load_state_dict(state_dict) | |
controller_ref= AttentionStore() | |
register_temporal_self_attention_control(ref_unet, controller_ref) | |
controller = AttentionStore() | |
register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref) | |
pipe = pipe.to(args.device) | |
# run inference | |
generator = torch.Generator(device=args.device) | |
if args.seed is not None: | |
generator = generator.manual_seed(args.seed) | |
frame1 = load_image(args.frame1_path) | |
frame1 = frame1.resize((1024, 576)) | |
frame2 = load_image(args.frame2_path) | |
frame2 = frame2.resize((1024, 576)) | |
frames = pipe(image1=frame1, image2=frame2, | |
num_inference_steps=args.num_inference_steps, | |
generator=generator, | |
weighted_average=args.weighted_average, | |
noise_injection_steps=args.noise_injection_steps, | |
noise_injection_ratio= args.noise_injection_ratio, | |
).frames[0] | |
if args.out_path.endswith('.gif'): | |
frames[0].save(args.out_path, save_all=True, append_images=frames[1:], duration=142, loop=0) | |
else: | |
export_to_video(frames, args.out_path, fps=7) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--pretrained_model_name_or_path", type=str, default="stabilityai/stable-video-diffusion-img2vid-xt") | |
parser.add_argument("--checkpoint_dir", type=str, required=True) | |
parser.add_argument('--frame1_path', type=str, required=True) | |
parser.add_argument('--frame2_path', type=str, required=True) | |
parser.add_argument('--out_path', type=str, required=True) | |
parser.add_argument('--seed', type=int, default=42) | |
parser.add_argument('--num_inference_steps', type=int, default=50) | |
parser.add_argument('--weighted_average', action='store_true') | |
parser.add_argument('--noise_injection_steps', type=int, default=0) | |
parser.add_argument('--noise_injection_ratio', type=float, default=0.5) | |
parser.add_argument('--device', type=str, default='cuda:0') | |
args = parser.parse_args() | |
out_dir = os.path.dirname(args.out_path) | |
os.makedirs(out_dir, exist_ok=True) | |
main(args) | |