fffiloni commited on
Commit
a231571
·
1 Parent(s): c422d9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -31,7 +31,7 @@ generator = torch.Generator(device="cuda")
31
 
32
  #pipe.enable_model_cpu_offload()
33
 
34
- def infer(use_custom_model, model_name, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
35
  if use_custom_model:
36
  custom_model = model_name
37
 
@@ -52,7 +52,7 @@ def infer(use_custom_model, model_name, image_in, prompt, negative_prompt, prepr
52
  image = Image.fromarray(image)
53
 
54
  if use_custom_model:
55
- lora_scale= 0.9
56
 
57
  images = pipe(
58
  prompt,
@@ -93,8 +93,7 @@ with gr.Blocks(css=css) as demo:
93
  Use StableDiffusion XL with ControlNet pretrained LoRas
94
 
95
  """)
96
- use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
97
- model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model")
98
  image_in = gr.Image(source="upload", type="filepath")
99
  with gr.Row():
100
  with gr.Column():
@@ -105,13 +104,15 @@ Use StableDiffusion XL with ControlNet pretrained LoRas
105
  preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
106
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
107
  seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
108
-
 
 
109
  submit_btn = gr.Button("Submit")
110
  result = gr.Image(label="Result")
111
 
112
  submit_btn.click(
113
  fn = infer,
114
- inputs = [use_custom_model, model_name, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
115
  outputs = [result]
116
  )
117
 
 
31
 
32
  #pipe.enable_model_cpu_offload()
33
 
34
+ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
35
  if use_custom_model:
36
  custom_model = model_name
37
 
 
52
  image = Image.fromarray(image)
53
 
54
  if use_custom_model:
55
+ lora_scale=custom_lora_weight
56
 
57
  images = pipe(
58
  prompt,
 
93
  Use StableDiffusion XL with ControlNet pretrained LoRas
94
 
95
  """)
96
+
 
97
  image_in = gr.Image(source="upload", type="filepath")
98
  with gr.Row():
99
  with gr.Column():
 
104
  preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
105
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
106
  seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
107
+ use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
108
+ model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model")
109
+ custom_lora_weight = gr.Slider(label="Custom weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
110
  submit_btn = gr.Button("Submit")
111
  result = gr.Image(label="Result")
112
 
113
  submit_btn.click(
114
  fn = infer,
115
+ inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
116
  outputs = [result]
117
  )
118