Spaces:
Sleeping
Sleeping
import logging | |
import random | |
import torch | |
from torch.cuda.amp import autocast as autocast | |
import torch.nn as nn | |
from minigpt4.common.registry import registry | |
from minigpt4.models.blip2 import Blip2Base, disabled_train | |
from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM | |
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub | |
from transformers import LlamaTokenizer, CodeLlamaTokenizer, BitsAndBytesConfig | |
from peft import ( | |
LoraConfig, | |
get_peft_model, | |
prepare_model_for_kbit_training | |
) | |
import time | |
import numpy as np | |
from minigpt4.models import policies | |
class MiniGPT4v(Blip2Base): | |
""" | |
BLIP2 GPT-LLAMA model. | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain_vicuna": "configs/models/minigpt4.yaml", | |
} | |
def __init__( | |
self, | |
vit_model="eva_clip_g", | |
img_size=224, | |
drop_path_rate=0, | |
use_grad_checkpoint=False, | |
vit_precision="fp16", | |
freeze_vit=True, | |
llama_model="", | |
prompt_path="", | |
prompt_template="", | |
max_txt_len=32, | |
low_resource=False, # use 8 bit and put vit in cpu | |
end_sym='\n', | |
lora_r = 8, | |
lora_target_modules = ["q_proj","v_proj"], | |
lora_alpha=16, | |
# lora_r = 16, | |
# lora_target_modules = ["q_proj","v_proj","v_proj"], | |
lora_dropout= 0.05, | |
ckpt_path = "", | |
system_prompt= False, | |
chat_template=False, | |
token_pooling=True, | |
use_grad_checkpoint_llm=False, | |
max_context_len=3800, | |
remove_template = False, | |
): | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
self.low_resource = low_resource | |
self.token_pooling = token_pooling | |
self.remove_template = remove_template | |
print("token pooling", self.token_pooling) | |
self.use_grad_checkpoint_llm = use_grad_checkpoint_llm | |
self.max_context_len = max_context_len | |
self.chat_template = chat_template | |
# print('Loading VIT') | |
# self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
# vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision | |
# ) | |
print("vit precision", vit_precision) | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
vit_model, 224, drop_path_rate, use_grad_checkpoint, vit_precision | |
) | |
for name, param in self.visual_encoder.named_parameters(): | |
param.requires_grad = False | |
self.visual_encoder = self.visual_encoder.eval() | |
self.visual_encoder.train = disabled_train | |
for name, param in self.ln_vision.named_parameters(): | |
param.requires_grad = False | |
self.ln_vision = self.ln_vision.eval() | |
self.ln_vision.train = disabled_train | |
logging.info("freeze vision encoder") | |
print("freeze the vision encoder") | |
print('Loading VIT Done') | |
# print("visual encoder shape", self.visual_encoder.pos_embed.shape) | |
# assert False | |
print('Loading LLAMA') | |
self.B_SYS, self.E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
if 'CodeLlama' in llama_model: | |
self.llama_tokenizer = CodeLlamaTokenizer.from_pretrained(llama_model, use_fast=False) # | |
self.llama_tokenizer.pad_token = "$$" | |
else: | |
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False) # | |
self.llama_tokenizer.pad_token = "$$" | |
self.system_prompt = system_prompt | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
self.llama_model = LlamaForCausalLM.from_pretrained( | |
llama_model, | |
quantization_config=bnb_config, | |
device_map={"": 0} | |
) | |
# self.llama_model.gradient_checkpointing_enable() | |
self.llama_model = prepare_model_for_kbit_training(self.llama_model) | |
# self.llama_model.print_trainable_parameters() | |
print('Loading LLAMA Done') | |
self.merge_n = 3 | |
self.llama_proj = nn.Linear( | |
1408 * self.merge_n**2, self.llama_model.config.hidden_size | |
) | |
self.max_txt_len = max_txt_len | |
self.end_sym = end_sym | |
if prompt_path: | |
with open(prompt_path, 'r') as f: | |
raw_prompts = f.read().splitlines() | |
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt] | |
self.prompt_list = [prompt_template.format(p) for p in filted_prompts] | |
print('Load {} training prompts'.format(len(self.prompt_list))) | |
print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) | |
else: | |
self.prompt_list = [] | |
def encode_img(self, image): | |
device = image.device | |
if len(image.shape) > 4: | |
image = image.reshape(-1, *image.shape[-3:]) | |
bs, ch, w, h = image.shape | |
assert w % 224 == 0 | |
bw = w // 224 | |
assert h % 224 == 0 | |
bh = h // 224 | |
image_patches = image.view(bs, ch, bw, 224, bh, 224).permute(0, 2, 4, 1, 3, 5) # bs, bw, bh, ch, 224, 224 | |
image_patches = image_patches.reshape(bs * bw * bh, ch, 224, 224) | |
with self.maybe_autocast(): | |
image_patch_embeds = self.ln_vision(self.visual_encoder(image_patches)).to(device) | |
image_patch_embeds = image_patch_embeds[:,1:,:].reshape(bs, bw, bh, 16, 16, image_patch_embeds.shape[-1]) | |
image_patch_embeds = image_patch_embeds.permute(0, 1, 3, 2, 4, 5) # bs, bw, 16, bh, 16, hs | |
image_embeds = image_patch_embeds.reshape(bs, bw * 16 * bh * 16, image_patch_embeds.shape[-1]) | |
bs, pn, hs = image_embeds.shape | |
image_embeds = image_embeds.view(bs, int(pn/self.merge_n**2), int(hs*self.merge_n**2)) | |
inputs_llama = self.llama_proj(image_embeds) | |
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) | |
return inputs_llama, atts_llama | |
def get_context_emb(self, prompt, img_list): | |
img_device = img_list[0].device | |
prompt_segs = prompt.split('<ImageHere>') | |
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." | |
seg_tokens = [ | |
self.llama_tokenizer( | |
seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids # only add bos to the first seg | |
for i, seg in enumerate(prompt_segs) | |
] | |
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens] | |
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] | |
mixed_embs = torch.cat(mixed_embs, dim=1) | |
return mixed_embs | |
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None): | |
if prompts is None or len(prompts) == 0: | |
# prompts is not provided, just return the original image embedding | |
return img_embeds, atts_img | |
elif img_embeds is None: | |
# prompt is provided but there is no image embedding. return the prompt embedding in right padding | |
self.llama_tokenizer.padding_side = "right" | |
prompt_tokens = self.llama_tokenizer( | |
prompts, | |
return_tensors="pt", | |
padding="longest", | |
add_special_tokens=False | |
).to(self.device) | |
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids) | |
atts_prompt = prompt_tokens.attention_mask | |
return prompt_embeds, atts_prompt | |
else: | |
# return the multi-modal embedding in right padding | |
emb_lists = [] | |
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)): | |
pn = each_img_embed.shape[-2] | |
if lengths is not None: | |
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1]) | |
each_img_embed = each_img_embed[:lengths[idx] * pn] | |
p_segs = each_prompt.split('<ImageHere>') | |
interleave_emb = [] | |
for idx, seg in enumerate(p_segs[:-1]): | |
p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) | |
p_embed = self.embed_tokens(p_tokens.input_ids) | |
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1)) | |
wrapped_emb = torch.cat(interleave_emb, dim=1) | |
p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device) | |
p_embed = self.embed_tokens(p_tokens.input_ids) | |
wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1) | |
emb_lists.append(wrapped_emb) | |
emb_lens = [emb.shape[1] for emb in emb_lists] | |
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device)) | |
max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len | |
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone() | |
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device) | |
for i, emb in enumerate(emb_lists): | |
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len | |
wrapped_embs[i, :length] = emb[:, :length] | |
wrapped_atts[i, :length] = 1 | |
return wrapped_embs, wrapped_atts | |
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts): | |
""" | |
Concatenate the batched input embedding and batched output embedding together. | |
Both the input and the output embedding should be right padded. | |
""" | |
input_lens = [] | |
cat_embs = [] | |
cat_atts = [] | |
for i in range(input_embs.size(0)): | |
input_len = input_atts[i].sum() | |
input_lens.append(input_len) | |
cat_embs.append( | |
torch.cat([ | |
input_embs[i][:input_len], | |
output_embs[i], | |
input_embs[i][input_len:] | |
]) | |
) | |
cat_atts.append( | |
torch.cat([ | |
input_atts[i][:input_len], | |
output_atts[i], | |
input_atts[i][input_len:] | |
]) | |
) | |
# print('===================================') | |
# print('check input emb: ', input_embs[i][this_input_ones-2:this_input_ones]) | |
# print('check pad emb: ', input_embs[i][this_input_ones:this_input_ones+2]) | |
# print('check out emb: ', output_embs[i][:2]) | |
# print('check out pad emb: ', output_embs[i][-2:]) | |
# print('+++++++++++++++++++++++++++++++++++') | |
# | |
# print('check attn before: ', input_atts[i][:this_input_ones]) | |
# print('check attn after: ', input_atts[i][this_input_ones:]) | |
# print('check attn gt before: ', output_atts[i][:3]) | |
# print('check attn gt after: ', output_atts[i][-3:]) | |
cat_embs = torch.stack(cat_embs) | |
cat_atts = torch.stack(cat_atts) | |
return cat_embs, cat_atts, input_lens | |
def get_conv_emb(self, conv_q, conv_a, conv_img): | |
"""concatenate conversation and make sure the model is only trained to regress the answer""" | |
regress_embs_list = [] | |
targets_list = [] | |
batch_size = len(conv_q) | |
for batch_idx in range(batch_size): | |
questions, answers = conv_q[batch_idx], conv_a[batch_idx] | |
assigned_imgs = conv_img[batch_idx] | |
questions = [self.prompt_wrap( | |
img_embeds=img, | |
atts_img=None, | |
prompts=[q], | |
lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)] | |
q_embs = [emb for emb, _ in questions] | |
answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers] | |
cur_emb = [] | |
cur_target = [] | |
for i in range(len(questions)): | |
cur_emb.append(q_embs[i]) | |
cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100) | |
cur_emb.append(self.embed_tokens(answers[i].input_ids)) | |
cur_target.append(answers[i].input_ids) | |
cur_emb = torch.cat(cur_emb, dim=1) | |
cur_target = torch.cat(cur_target, dim=1) | |
regress_embs_list.append(cur_emb) | |
targets_list.append(cur_target) | |
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len) | |
regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device) | |
regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device) | |
targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100 | |
for batch_idx in range(batch_size): | |
cur_len = regress_embs_list[batch_idx].shape[1] | |
regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len] | |
regress_attn[batch_idx, :cur_len] = 1 | |
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len] | |
return regress_embeds, regress_attn, targets | |
def preparing_embedding(self, samples): | |
def remove_special_tokens(data): | |
# if "instruction_input" in data: | |
data = [instruct.replace(" [caption]","") for instruct in data] | |
data = [instruct.replace(" [vqa]","") for instruct in data] | |
data = [instruct.replace(" [grounding]","") for instruct in data] | |
data = [instruct.replace(" [identify]","") for instruct in data] | |
data = [instruct.replace(" [refer]","") for instruct in data] | |
return data | |
### prepare input tokens | |
if 'image' in samples: | |
img_embeds, img_atts = self.encode_img(samples["image"]) | |
else: | |
img_embeds = img_atts = None | |
if 'conv_q' in samples: | |
# handeling conversation datasets | |
conv_q, conv_a = samples['conv_q'], samples['conv_a'] | |
connect_sym = samples['connect_sym'][0] | |
conv_q = [q.split(connect_sym)for q in conv_q] | |
conv_a = [a.split(connect_sym) for a in conv_a] | |
conv_img = assign_imgs(conv_q, img_embeds) | |
if self.chat_template: | |
conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q] | |
regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img) | |
cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0] | |
else: | |
instruction = samples["instruction_input"] if "instruction_input" in samples else None | |
# print("instruction before", instruction) | |
if self.remove_template: | |
instruction = remove_special_tokens(instruction) | |
# print("instruction after", instruction) | |
if self.chat_template: | |
instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction] | |
if 'length' in samples: | |
# the input is a image train (like videos) | |
bsz, pn, hs = img_embeds.shape | |
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) | |
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length']) | |
else: | |
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction) | |
### prepare target tokens | |
self.llama_tokenizer.padding_side = "right" | |
text = [t + self.end_sym for t in samples["answer"]] | |
regress_tokens = self.llama_tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
add_special_tokens=False | |
).to(self.device) | |
regress_token_ids = regress_tokens.input_ids | |
regress_atts = regress_tokens.attention_mask | |
part_targets = regress_token_ids.masked_fill( | |
regress_token_ids == self.llama_tokenizer.pad_token_id, -100 | |
) | |
regress_embeds = self.embed_tokens(regress_token_ids) | |
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets | |
def forward(self, samples, reduction="mean"): | |
# prepare the embedding to condition and the embedding to regress | |
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \ | |
self.preparing_embedding(samples) | |
# concat the embedding to condition and the embedding to regress | |
inputs_embeds, attention_mask, input_lens = \ | |
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts) | |
# get bos token embedding | |
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id | |
bos_embeds = self.embed_tokens(bos) | |
bos_atts = attention_mask[:, :1] | |
# add bos token at the begining | |
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) | |
attention_mask = torch.cat([bos_atts, attention_mask], dim=1) | |
# ensemble the final targets | |
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]], | |
dtype=torch.long).to(self.device).fill_(-100) | |
for i, target in enumerate(part_targets): | |
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos | |
with self.maybe_autocast(): | |
outputs = self.llama_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
reduction=reduction | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def generate( | |
self, | |
images, | |
texts, | |
use_nucleus_sampling=False, | |
num_beams=1, | |
max_new_tokens=20, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1, | |
length_penalty=1, | |
temperature=1, | |
do_sample=False, | |
stop_words_ids=[2], | |
lengths=None, | |
): | |
''' | |
function for generate test use | |
''' | |
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub( | |
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])]) | |
img_embeds, atts_img = self.encode_img(images.to(self.device)) | |
if lengths is not None: | |
image_lists = [] | |
img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1]) | |
for idx, img_embed in enumerate(img_embeds): | |
image_lists.append([img_embed[i][None] for i in range(lengths[idx])]) | |
else: | |
image_lists = [[image_emb[None]] for image_emb in img_embeds] | |
assert len(texts) == len(image_lists) | |
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)] | |
batch_size = len(batch_embs) | |
max_len = max([emb.shape[1] for emb in batch_embs]) | |
emb_dim = batch_embs[0].shape[2] | |
dtype = batch_embs[0].dtype | |
device = batch_embs[0].device | |
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device) | |
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device) | |
for i, emb in enumerate(batch_embs): | |
emb_len = emb.shape[1] | |
embs[i, -emb_len:] = emb[0] | |
attn_mask[i, -emb_len:] = 1 | |
with self.maybe_autocast(): | |
outputs = self.llama_model.generate( | |
inputs_embeds=embs, | |
attention_mask=attn_mask, | |
max_new_tokens=max_new_tokens, | |
num_beams=num_beams, | |
do_sample=do_sample, | |
# stopping_criteria=stopping_criteria, | |
) | |
answers = [] | |
for output_token in outputs: | |
if output_token[0] == 0: | |
output_token = output_token[1:] | |
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True) | |
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s> | |
output_texts = output_texts.replace("<s>", "") | |
output_texts = output_texts.split(r'[/INST]')[-1].strip() | |
answers.append(output_texts) | |
return answers | |
def multi_select(self, images, texts, answers, num_cand=None): | |
all_losses = [] | |
for answer in answers: | |
choice_samples = { | |
'image': images, | |
'instruction_input': texts, | |
'answer': answer | |
} | |
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1) | |
all_losses.append(loss) | |
torch.cuda.empty_cache() | |
all_losses = torch.cat(all_losses, dim=-1) | |
if num_cand is not None: | |
for i in range(all_losses.shape[0]): | |
all_losses[i, num_cand[i]:] = 9999 | |
output_class_ranks = torch.argsort(all_losses, dim=-1) | |
return output_class_ranks.tolist() | |
def predict_answers( | |
self, | |
samples, | |
num_beams=5, | |
inference_method="generate", | |
max_len=10, | |
min_len=1, | |
num_ans_candidates=128, | |
answer_list=None, | |
prompt="", | |
length_penalty=0, | |
**kwargs | |
): | |
''' | |
function for open-ended VQA | |
''' | |
images = samples["image"].cuda() | |
texts = samples["instruction_input"] | |
output_text = self.generate( | |
images=images, | |
texts=texts, | |
num_beams=num_beams, | |
max_new_tokens=max_len, | |
min_length=min_len, | |
length_penalty=length_penalty | |
) | |
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]: | |
output_text = self._lemmatize(output_text) | |
return output_text | |
def predict_class( | |
self, | |
samples, | |
num_beams=5, | |
inference_method="generate", | |
max_len=10, | |
min_len=1, | |
num_ans_candidates=5, | |
answer_list=None, | |
prompt="", | |
length_penalty=0, | |
**kwargs | |
): | |
''' | |
function for multi-choice VQA | |
''' | |
image = samples["image"].cuda() | |
instruction = samples['instruction_input'] | |
answers = samples["choices"] | |
num_cand = samples["num_choices"] | |
ranks = self.multi_select(image, instruction, answers, num_cand) | |
pred_ans = [] | |
for i, rank in enumerate(ranks): | |
pred = answers[rank[0]][i] | |
pred_ans.append(pred) | |
return pred_ans | |
def embed_tokens(self, token_ids): | |
try: | |
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) | |
except AttributeError: | |
embeds = self.llama_model.model.embed_tokens(token_ids) | |
return embeds | |
def from_config(cls, cfg): | |
vit_model = cfg.get("vit_model", "eva_clip_g") | |
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") | |
img_size = cfg.get("image_size") | |
num_query_token = cfg.get("num_query_token") | |
llama_model = cfg.get("llama_model") | |
drop_path_rate = cfg.get("drop_path_rate", 0) | |
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) | |
vit_precision = cfg.get("vit_precision", "fp16") | |
freeze_vit = cfg.get("freeze_vit", True) | |
freeze_qformer = cfg.get("freeze_qformer", True) | |
low_resource = cfg.get("low_resource", False) | |
prompt_path = cfg.get("prompt_path", "") | |
prompt_template = cfg.get("prompt_template", "") | |
max_txt_len = cfg.get("max_txt_len", 300) | |
end_sym = cfg.get("end_sym", '\n') | |
lora_r = cfg.get("lora_r",64) | |
lora_alpha = cfg.get("lora_alpha",16) | |
chat_template = cfg.get("chat_template",False) | |
system_prompt = cfg.get("system_prompt", False) | |
token_pooling = cfg.get("token_pooling",True) | |
use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False) | |
max_context_len = cfg.get("max_context_len", 3800) | |
remove_template = cfg.get("remove_template", False) | |
model = cls( | |
vit_model=vit_model, | |
img_size=img_size, | |
drop_path_rate=drop_path_rate, | |
use_grad_checkpoint=use_grad_checkpoint, | |
vit_precision=vit_precision, | |
freeze_vit=freeze_vit, | |
llama_model=llama_model, | |
prompt_path=prompt_path, | |
prompt_template=prompt_template, | |
max_txt_len=max_txt_len, | |
low_resource=low_resource, | |
end_sym=end_sym, | |
lora_r = lora_r, | |
lora_alpha = lora_alpha, | |
chat_template = chat_template, | |
system_prompt = system_prompt, | |
token_pooling = token_pooling, | |
use_grad_checkpoint_llm=use_grad_checkpoint_llm, | |
max_context_len=max_context_len, | |
remove_template = remove_template | |
) | |
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 | |
if ckpt_path: | |
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path)) | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
msg = model.load_state_dict(ckpt['model'], strict=False) | |
return model | |
def assign_imgs(batched_instruct_list, batched_img_embeds): | |
'''this function is used when the data is interleaved. | |
the interlevaed data is separated, and this function assign | |
corresponding image embeddings to each segment''' | |
if len(batched_img_embeds.shape) == 3: | |
batched_img_embeds = batched_img_embeds[:, None] | |
batched_assigned = [] | |
for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds): | |
img_idx = 0 | |
assigned_img = [] | |
n_assigned = [] | |
for instruct in instruct_list: | |
n_img = instruct.count('<ImageHere>') | |
if n_img > 0: # this instruction include images. | |
assigned_img.append(img_embeds[None, img_idx:img_idx+n_img]) | |
img_idx += n_img | |
n_assigned.append(n_img) | |
else: # this instruction doesn't include images | |
assigned_img.append(None) | |
n_assigned.append(None) | |
batched_assigned.append(assigned_img) | |
return batched_assigned |