Spaces:
Starting
on
Zero
Starting
on
Zero
import openai | |
import os | |
import argparse | |
import json | |
import ast | |
from multiprocessing.pool import Pool | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3") | |
parser.add_argument("--pred_path", required=True, help="The path to file containing prediction.") | |
parser.add_argument("--output_dir", required=True, help="The path to save annotation json files.") | |
parser.add_argument("--output_json", required=True, help="The path to save annotation final combined json file.") | |
parser.add_argument("--api_key", required=True, help="OpenAI API key.") | |
parser.add_argument("--num_tasks", required=True, type=int, help="Number of splits.") | |
args = parser.parse_args() | |
return args | |
def annotate(prediction_set, caption_files, output_dir): | |
""" | |
Evaluates question and answer pairs using GPT-3 and | |
returns a score for contextual understanding. | |
""" | |
for file in caption_files: | |
key = file[:-5] # Strip file extension | |
qa_set = prediction_set[key] | |
question = qa_set['q'] | |
answer = qa_set['a'] | |
pred = qa_set['pred'] | |
try: | |
# Compute the contextual understanding score | |
completion = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{ | |
"role": "system", | |
"content": | |
"You are an intelligent chatbot designed for evaluating the contextual understanding of generative outputs for video-based question-answer pairs. " | |
"Your task is to compare the predicted answer with the correct answer and determine if the generated response aligns with the overall context of the video content. Here's how you can accomplish the task:" | |
"------" | |
"##INSTRUCTIONS: " | |
"- Evaluate whether the predicted answer aligns with the overall context of the video content. It should not provide information that is out of context or misaligned.\n" | |
"- The predicted answer must capture the main themes and sentiments of the video.\n" | |
"- Consider synonyms or paraphrases as valid matches.\n" | |
"- Provide your evaluation of the contextual understanding of the prediction compared to the answer." | |
}, | |
{ | |
"role": "user", | |
"content": | |
"Please evaluate the following video-based question-answer pair:\n\n" | |
f"Question: {question}\n" | |
f"Correct Answer: {answer}\n" | |
f"Predicted Answer: {pred}\n\n" | |
"Provide your evaluation only as a contextual understanding score where the contextual understanding score is an integer value between 0 and 5, with 5 indicating the highest level of contextual understanding. " | |
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is contextual understanding score in INTEGER, not STRING." | |
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. " | |
"For example, your response should look like this: {''score': 4.8}." | |
} | |
] | |
) | |
# Convert response to a Python dictionary. | |
response_message = completion["choices"][0]["message"]["content"] | |
response_dict = ast.literal_eval(response_message) | |
result_qa_pair = [response_dict, qa_set] | |
# Save the question-answer pairs to a json file. | |
with open(f"{output_dir}/{key}.json", "w") as f: | |
json.dump(result_qa_pair, f) | |
except Exception as e: | |
print(f"Error processing file '{key}': {e}") | |
def main(): | |
""" | |
Main function to control the flow of the program. | |
""" | |
# Parse arguments. | |
args = parse_args() | |
file = open(args.pred_path) | |
pred_contents = json.load(file) | |
# Dictionary to store the count of occurrences for each video_id | |
video_id_counts = {} | |
new_pred_contents = [] | |
# Iterate through each sample in pred_contents | |
for sample in pred_contents: | |
video_id = sample['video_name'] | |
if video_id in video_id_counts: | |
video_id_counts[video_id] += 1 | |
else: | |
video_id_counts[video_id] = 0 | |
# Create a new sample with the modified key | |
new_sample = sample | |
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}" | |
new_pred_contents.append(new_sample) | |
# Generating list of id's and corresponding files | |
id_list = [x['video_name'] for x in new_pred_contents] | |
caption_files = [f"{id}.json" for id in id_list] | |
output_dir = args.output_dir | |
# Generate output directory if not exists. | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Preparing dictionary of question-answer sets | |
prediction_set = {} | |
for sample in new_pred_contents: | |
id = sample['video_name'] | |
question = sample['Q'] | |
answer = sample['A'] | |
pred = sample['pred'] | |
qa_set = {"q": question, "a": answer, "pred": pred} | |
prediction_set[id] = qa_set | |
# Set the OpenAI API key. | |
openai.api_key = args.api_key | |
num_tasks = args.num_tasks | |
# While loop to ensure that all captions are processed. | |
while True: | |
try: | |
# Files that have not been processed yet. | |
completed_files = os.listdir(output_dir) | |
print(f"completed_files: {len(completed_files)}") | |
# Files that have not been processed yet. | |
incomplete_files = [f for f in caption_files if f not in completed_files] | |
print(f"incomplete_files: {len(incomplete_files)}") | |
# Break the loop when there are no incomplete files | |
if len(incomplete_files) == 0: | |
break | |
if len(incomplete_files) <= num_tasks: | |
num_tasks = 1 | |
# Split tasks into parts. | |
part_len = len(incomplete_files) // num_tasks | |
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)] | |
task_args = [(prediction_set, part, args.output_dir) for part in all_parts] | |
# Use a pool of workers to process the files in parallel. | |
with Pool() as pool: | |
pool.starmap(annotate, task_args) | |
except Exception as e: | |
print(f"Error: {e}") | |
# Combine all the processed files into one | |
combined_contents = {} | |
json_path = args.output_json | |
# Iterate through json files | |
for file_name in os.listdir(output_dir): | |
if file_name.endswith(".json"): | |
file_path = os.path.join(output_dir, file_name) | |
with open(file_path, "r") as json_file: | |
content = json.load(json_file) | |
combined_contents[file_name[:-5]] = content | |
# Write combined content to a json file | |
with open(json_path, "w") as json_file: | |
json.dump(combined_contents, json_file) | |
print("All evaluation completed!") | |
# Calculate average score | |
score_sum = 0 | |
count = 0 | |
for key, result in combined_contents.items(): | |
count += 1 | |
score_match = result[0]['score'] | |
score = int(score_match) | |
score_sum += score | |
average_score = score_sum / count | |
print("Average score for contextual understanding:", average_score) | |
if __name__ == "__main__": | |
main() | |