|
|
|
|
|
"""
|
|
This file defines various neural network modules and utility functions, including convolutional and residual blocks,
|
|
normalizations, and functions for spatial transformation and tensor manipulation.
|
|
"""
|
|
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torch
|
|
import torch.nn.utils.spectral_norm as spectral_norm
|
|
import math
|
|
import warnings
|
|
|
|
|
|
def kp2gaussian(kp, spatial_size, kp_variance):
|
|
"""
|
|
Transform a keypoint into gaussian like representation
|
|
"""
|
|
mean = kp
|
|
|
|
coordinate_grid = make_coordinate_grid(spatial_size, mean)
|
|
number_of_leading_dimensions = len(mean.shape) - 1
|
|
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
|
|
coordinate_grid = coordinate_grid.view(*shape)
|
|
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
|
|
coordinate_grid = coordinate_grid.repeat(*repeats)
|
|
|
|
|
|
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
|
|
mean = mean.view(*shape)
|
|
|
|
mean_sub = (coordinate_grid - mean)
|
|
|
|
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
|
|
|
|
return out
|
|
|
|
|
|
def make_coordinate_grid(spatial_size, ref, **kwargs):
|
|
d, h, w = spatial_size
|
|
x = torch.arange(w).type(ref.dtype).to(ref.device)
|
|
y = torch.arange(h).type(ref.dtype).to(ref.device)
|
|
z = torch.arange(d).type(ref.dtype).to(ref.device)
|
|
|
|
|
|
x = (2 * (x / (w - 1)) - 1)
|
|
y = (2 * (y / (h - 1)) - 1)
|
|
z = (2 * (z / (d - 1)) - 1)
|
|
|
|
yy = y.view(1, -1, 1).repeat(d, 1, w)
|
|
xx = x.view(1, 1, -1).repeat(d, h, 1)
|
|
zz = z.view(-1, 1, 1).repeat(1, h, w)
|
|
|
|
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
|
|
|
|
return meshed
|
|
|
|
|
|
class ConvT2d(nn.Module):
|
|
"""
|
|
Upsampling block for use in decoder.
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
|
|
super(ConvT2d, self).__init__()
|
|
|
|
self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, output_padding=output_padding)
|
|
self.norm = nn.InstanceNorm2d(out_features)
|
|
|
|
def forward(self, x):
|
|
out = self.convT(x)
|
|
out = self.norm(out)
|
|
out = F.leaky_relu(out)
|
|
return out
|
|
|
|
|
|
class ResBlock3d(nn.Module):
|
|
"""
|
|
Res block, preserve spatial resolution.
|
|
"""
|
|
|
|
def __init__(self, in_features, kernel_size, padding):
|
|
super(ResBlock3d, self).__init__()
|
|
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
|
|
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
|
|
self.norm1 = nn.BatchNorm3d(in_features, affine=True)
|
|
self.norm2 = nn.BatchNorm3d(in_features, affine=True)
|
|
|
|
def forward(self, x):
|
|
out = self.norm1(x)
|
|
out = F.relu(out)
|
|
out = self.conv1(out)
|
|
out = self.norm2(out)
|
|
out = F.relu(out)
|
|
out = self.conv2(out)
|
|
out += x
|
|
return out
|
|
|
|
|
|
class UpBlock3d(nn.Module):
|
|
"""
|
|
Upsampling block for use in decoder.
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
|
|
super(UpBlock3d, self).__init__()
|
|
|
|
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
|
|
padding=padding, groups=groups)
|
|
self.norm = nn.BatchNorm3d(out_features, affine=True)
|
|
|
|
def forward(self, x):
|
|
out = F.interpolate(x, scale_factor=(1, 2, 2))
|
|
out = self.conv(out)
|
|
out = self.norm(out)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class DownBlock2d(nn.Module):
|
|
"""
|
|
Downsampling block for use in encoder.
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
|
|
super(DownBlock2d, self).__init__()
|
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
|
|
self.norm = nn.BatchNorm2d(out_features, affine=True)
|
|
self.pool = nn.AvgPool2d(kernel_size=(2, 2))
|
|
|
|
def forward(self, x):
|
|
out = self.conv(x)
|
|
out = self.norm(out)
|
|
out = F.relu(out)
|
|
out = self.pool(out)
|
|
return out
|
|
|
|
|
|
class DownBlock3d(nn.Module):
|
|
"""
|
|
Downsampling block for use in encoder.
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
|
|
super(DownBlock3d, self).__init__()
|
|
'''
|
|
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
|
|
padding=padding, groups=groups, stride=(1, 2, 2))
|
|
'''
|
|
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
|
|
padding=padding, groups=groups)
|
|
self.norm = nn.BatchNorm3d(out_features, affine=True)
|
|
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
|
|
|
|
def forward(self, x):
|
|
out = self.conv(x)
|
|
out = self.norm(out)
|
|
out = F.relu(out)
|
|
out = self.pool(out)
|
|
return out
|
|
|
|
|
|
class SameBlock2d(nn.Module):
|
|
"""
|
|
Simple block, preserve spatial resolution.
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
|
|
super(SameBlock2d, self).__init__()
|
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
|
|
self.norm = nn.BatchNorm2d(out_features, affine=True)
|
|
if lrelu:
|
|
self.ac = nn.LeakyReLU()
|
|
else:
|
|
self.ac = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
out = self.conv(x)
|
|
out = self.norm(out)
|
|
out = self.ac(out)
|
|
return out
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
"""
|
|
Hourglass Encoder
|
|
"""
|
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
|
|
super(Encoder, self).__init__()
|
|
|
|
down_blocks = []
|
|
for i in range(num_blocks):
|
|
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
|
|
self.down_blocks = nn.ModuleList(down_blocks)
|
|
|
|
def forward(self, x):
|
|
outs = [x]
|
|
for down_block in self.down_blocks:
|
|
outs.append(down_block(outs[-1]))
|
|
return outs
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
"""
|
|
Hourglass Decoder
|
|
"""
|
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
|
|
super(Decoder, self).__init__()
|
|
|
|
up_blocks = []
|
|
|
|
for i in range(num_blocks)[::-1]:
|
|
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
|
|
out_filters = min(max_features, block_expansion * (2 ** i))
|
|
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
|
|
|
|
self.up_blocks = nn.ModuleList(up_blocks)
|
|
self.out_filters = block_expansion + in_features
|
|
|
|
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
|
|
self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
|
|
|
|
def forward(self, x):
|
|
out = x.pop()
|
|
for up_block in self.up_blocks:
|
|
out = up_block(out)
|
|
skip = x.pop()
|
|
out = torch.cat([out, skip], dim=1)
|
|
out = self.conv(out)
|
|
out = self.norm(out)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class Hourglass(nn.Module):
|
|
"""
|
|
Hourglass architecture.
|
|
"""
|
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
|
|
super(Hourglass, self).__init__()
|
|
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
|
|
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
|
|
self.out_filters = self.decoder.out_filters
|
|
|
|
def forward(self, x):
|
|
return self.decoder(self.encoder(x))
|
|
|
|
|
|
class SPADE(nn.Module):
|
|
def __init__(self, norm_nc, label_nc):
|
|
super().__init__()
|
|
|
|
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
|
|
nhidden = 128
|
|
|
|
self.mlp_shared = nn.Sequential(
|
|
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
|
|
nn.ReLU())
|
|
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
|
|
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
|
|
|
|
def forward(self, x, segmap):
|
|
normalized = self.param_free_norm(x)
|
|
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
|
|
actv = self.mlp_shared(segmap)
|
|
gamma = self.mlp_gamma(actv)
|
|
beta = self.mlp_beta(actv)
|
|
out = normalized * (1 + gamma) + beta
|
|
return out
|
|
|
|
|
|
class SPADEResnetBlock(nn.Module):
|
|
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
|
|
super().__init__()
|
|
|
|
self.learned_shortcut = (fin != fout)
|
|
fmiddle = min(fin, fout)
|
|
self.use_se = use_se
|
|
|
|
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
|
|
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
|
|
if self.learned_shortcut:
|
|
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
|
|
|
|
if 'spectral' in norm_G:
|
|
self.conv_0 = spectral_norm(self.conv_0)
|
|
self.conv_1 = spectral_norm(self.conv_1)
|
|
if self.learned_shortcut:
|
|
self.conv_s = spectral_norm(self.conv_s)
|
|
|
|
self.norm_0 = SPADE(fin, label_nc)
|
|
self.norm_1 = SPADE(fmiddle, label_nc)
|
|
if self.learned_shortcut:
|
|
self.norm_s = SPADE(fin, label_nc)
|
|
|
|
def forward(self, x, seg1):
|
|
x_s = self.shortcut(x, seg1)
|
|
dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
|
|
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
|
|
out = x_s + dx
|
|
return out
|
|
|
|
def shortcut(self, x, seg1):
|
|
if self.learned_shortcut:
|
|
x_s = self.conv_s(self.norm_s(x, seg1))
|
|
else:
|
|
x_s = x
|
|
return x_s
|
|
|
|
def actvn(self, x):
|
|
return F.leaky_relu(x, 2e-1)
|
|
|
|
|
|
def filter_state_dict(state_dict, remove_name='fc'):
|
|
new_state_dict = {}
|
|
for key in state_dict:
|
|
if remove_name in key:
|
|
continue
|
|
new_state_dict[key] = state_dict[key]
|
|
return new_state_dict
|
|
|
|
|
|
class GRN(nn.Module):
|
|
""" GRN (Global Response Normalization) layer
|
|
"""
|
|
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
|
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
|
|
|
def forward(self, x):
|
|
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
|
return self.gamma * (x * Nx) + self.beta + x
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
|
with shape (batch_size, channels, height, width).
|
|
"""
|
|
|
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
|
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
|
self.eps = eps
|
|
self.data_format = data_format
|
|
if self.data_format not in ["channels_last", "channels_first"]:
|
|
raise NotImplementedError
|
|
self.normalized_shape = (normalized_shape, )
|
|
|
|
def forward(self, x):
|
|
if self.data_format == "channels_last":
|
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
|
elif self.data_format == "channels_first":
|
|
u = x.mean(1, keepdim=True)
|
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.eps)
|
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
return x
|
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
|
|
|
|
|
def norm_cdf(x):
|
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
"The distribution of values may be incorrect.",
|
|
stacklevel=2)
|
|
|
|
with torch.no_grad():
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std)
|
|
u = norm_cdf((b - mean) / std)
|
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
|
|
|
|
|
|
|
tensor.erfinv_()
|
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.))
|
|
tensor.add_(mean)
|
|
|
|
|
|
tensor.clamp_(min=a, max=b)
|
|
return tensor
|
|
|
|
|
|
def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
|
|
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
|
'survival rate' as the argument.
|
|
|
|
"""
|
|
if drop_prob == 0. or not training:
|
|
return x
|
|
keep_prob = 1 - drop_prob
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
if keep_prob > 0.0 and scale_by_keep:
|
|
random_tensor.div_(keep_prob)
|
|
return x * random_tensor
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
"""
|
|
|
|
def __init__(self, drop_prob=None, scale_by_keep=True):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
self.scale_by_keep = scale_by_keep
|
|
|
|
def forward(self, x):
|
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
|
|