|
|
|
|
|
"""
|
|
The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
|
|
"""
|
|
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torch
|
|
from .util import Hourglass, make_coordinate_grid, kp2gaussian
|
|
|
|
|
|
class DenseMotionNetwork(nn.Module):
|
|
def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
|
|
super(DenseMotionNetwork, self).__init__()
|
|
self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks)
|
|
|
|
self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3)
|
|
self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1)
|
|
self.norm = nn.BatchNorm3d(compress, affine=True)
|
|
self.num_kp = num_kp
|
|
self.flag_estimate_occlusion_map = estimate_occlusion_map
|
|
|
|
if self.flag_estimate_occlusion_map:
|
|
self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
|
|
else:
|
|
self.occlusion = None
|
|
|
|
def create_sparse_motions(self, feature, kp_driving, kp_source):
|
|
bs, _, d, h, w = feature.shape
|
|
identity_grid = make_coordinate_grid((d, h, w), ref=kp_source)
|
|
identity_grid = identity_grid.view(1, 1, d, h, w, 3)
|
|
coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
|
|
|
|
k = coordinate_grid.shape[1]
|
|
|
|
|
|
driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3)
|
|
|
|
|
|
identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
|
|
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1)
|
|
return sparse_motions
|
|
|
|
def create_deformed_feature(self, feature, sparse_motions):
|
|
bs, _, d, h, w = feature.shape
|
|
feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1)
|
|
feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w)
|
|
sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1))
|
|
sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
|
|
sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w))
|
|
|
|
return sparse_deformed
|
|
|
|
def create_heatmap_representations(self, feature, kp_driving, kp_source):
|
|
spatial_size = feature.shape[3:]
|
|
gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01)
|
|
gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01)
|
|
heatmap = gaussian_driving - gaussian_source
|
|
|
|
|
|
zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device)
|
|
heatmap = torch.cat([zeros, heatmap], dim=1)
|
|
heatmap = heatmap.unsqueeze(2)
|
|
return heatmap
|
|
|
|
def forward(self, feature, kp_driving, kp_source):
|
|
bs, _, d, h, w = feature.shape
|
|
|
|
feature = self.compress(feature)
|
|
feature = self.norm(feature)
|
|
feature = F.relu(feature)
|
|
|
|
out_dict = dict()
|
|
|
|
|
|
sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source)
|
|
deformed_feature = self.create_deformed_feature(feature, sparse_motion)
|
|
|
|
|
|
heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source)
|
|
|
|
input = torch.cat([heatmap, deformed_feature], dim=2)
|
|
input = input.view(bs, -1, d, h, w)
|
|
|
|
prediction = self.hourglass(input)
|
|
|
|
mask = self.mask(prediction)
|
|
mask = F.softmax(mask, dim=1)
|
|
out_dict['mask'] = mask
|
|
mask = mask.unsqueeze(2)
|
|
sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4)
|
|
deformation = (sparse_motion * mask).sum(dim=1)
|
|
deformation = deformation.permute(0, 2, 3, 4, 1)
|
|
|
|
out_dict['deformation'] = deformation
|
|
|
|
if self.flag_estimate_occlusion_map:
|
|
bs, _, d, h, w = prediction.shape
|
|
prediction_reshape = prediction.view(bs, -1, h, w)
|
|
occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape))
|
|
out_dict['occlusion_map'] = occlusion_map
|
|
|
|
return out_dict
|
|
|