|
|
|
|
|
"""
|
|
cropping function and the related preprocess functions for cropping
|
|
"""
|
|
|
|
import numpy as np
|
|
import os.path as osp
|
|
from math import sin, cos, acos, degrees
|
|
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
|
|
from .rprint import rprint as print
|
|
|
|
DTYPE = np.float32
|
|
CV2_INTERP = cv2.INTER_LINEAR
|
|
|
|
def make_abs_path(fn):
|
|
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
|
|
|
|
def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None):
|
|
""" conduct similarity or affine transformation to the image, do not do border operation!
|
|
img:
|
|
M: 2x3 matrix or 3x3 matrix
|
|
dsize: target shape (width, height)
|
|
"""
|
|
if isinstance(dsize, tuple) or isinstance(dsize, list):
|
|
_dsize = tuple(dsize)
|
|
else:
|
|
_dsize = (dsize, dsize)
|
|
|
|
if borderMode is not None:
|
|
return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0))
|
|
else:
|
|
return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags)
|
|
|
|
|
|
def _transform_pts(pts, M):
|
|
""" conduct similarity or affine transformation to the pts
|
|
pts: Nx2 ndarray
|
|
M: 2x3 matrix or 3x3 matrix
|
|
return: Nx2
|
|
"""
|
|
return pts @ M[:2, :2].T + M[:2, 2]
|
|
|
|
|
|
def parse_pt2_from_pt101(pt101, use_lip=True):
|
|
"""
|
|
parsing the 2 points according to the 101 points, which cancels the roll
|
|
"""
|
|
|
|
pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0)
|
|
pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0)
|
|
|
|
if use_lip:
|
|
|
|
pt_center_eye = (pt_left_eye + pt_right_eye) / 2
|
|
pt_center_lip = (pt101[75] + pt101[81]) / 2
|
|
pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
|
|
else:
|
|
pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
|
|
return pt2
|
|
|
|
|
|
def parse_pt2_from_pt106(pt106, use_lip=True):
|
|
"""
|
|
parsing the 2 points according to the 106 points, which cancels the roll
|
|
"""
|
|
pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0)
|
|
pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0)
|
|
|
|
if use_lip:
|
|
|
|
pt_center_eye = (pt_left_eye + pt_right_eye) / 2
|
|
pt_center_lip = (pt106[52] + pt106[61]) / 2
|
|
pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
|
|
else:
|
|
pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
|
|
return pt2
|
|
|
|
|
|
def parse_pt2_from_pt203(pt203, use_lip=True):
|
|
"""
|
|
parsing the 2 points according to the 203 points, which cancels the roll
|
|
"""
|
|
pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0)
|
|
pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0)
|
|
if use_lip:
|
|
|
|
pt_center_eye = (pt_left_eye + pt_right_eye) / 2
|
|
pt_center_lip = (pt203[48] + pt203[66]) / 2
|
|
pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
|
|
else:
|
|
pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
|
|
return pt2
|
|
|
|
|
|
def parse_pt2_from_pt68(pt68, use_lip=True):
|
|
"""
|
|
parsing the 2 points according to the 68 points, which cancels the roll
|
|
"""
|
|
lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1
|
|
if use_lip:
|
|
pt5 = np.stack([
|
|
np.mean(pt68[lm_idx[[1, 2]], :], 0),
|
|
np.mean(pt68[lm_idx[[3, 4]], :], 0),
|
|
pt68[lm_idx[0], :],
|
|
pt68[lm_idx[5], :],
|
|
pt68[lm_idx[6], :]
|
|
], axis=0)
|
|
|
|
pt2 = np.stack([
|
|
(pt5[0] + pt5[1]) / 2,
|
|
(pt5[3] + pt5[4]) / 2
|
|
], axis=0)
|
|
else:
|
|
pt2 = np.stack([
|
|
np.mean(pt68[lm_idx[[1, 2]], :], 0),
|
|
np.mean(pt68[lm_idx[[3, 4]], :], 0),
|
|
], axis=0)
|
|
|
|
return pt2
|
|
|
|
|
|
def parse_pt2_from_pt5(pt5, use_lip=True):
|
|
"""
|
|
parsing the 2 points according to the 5 points, which cancels the roll
|
|
"""
|
|
if use_lip:
|
|
pt2 = np.stack([
|
|
(pt5[0] + pt5[1]) / 2,
|
|
(pt5[3] + pt5[4]) / 2
|
|
], axis=0)
|
|
else:
|
|
pt2 = np.stack([
|
|
pt5[0],
|
|
pt5[1]
|
|
], axis=0)
|
|
return pt2
|
|
|
|
|
|
def parse_pt2_from_pt_x(pts, use_lip=True):
|
|
if pts.shape[0] == 101:
|
|
pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip)
|
|
elif pts.shape[0] == 106:
|
|
pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip)
|
|
elif pts.shape[0] == 68:
|
|
pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip)
|
|
elif pts.shape[0] == 5:
|
|
pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip)
|
|
elif pts.shape[0] == 203:
|
|
pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip)
|
|
elif pts.shape[0] > 101:
|
|
|
|
pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip)
|
|
else:
|
|
raise Exception(f'Unknow shape: {pts.shape}')
|
|
|
|
if not use_lip:
|
|
|
|
v = pt2[1] - pt2[0]
|
|
pt2[1, 0] = pt2[0, 0] - v[1]
|
|
pt2[1, 1] = pt2[0, 1] + v[0]
|
|
|
|
return pt2
|
|
|
|
|
|
def parse_rect_from_landmark(
|
|
pts,
|
|
scale=1.5,
|
|
need_square=True,
|
|
vx_ratio=0,
|
|
vy_ratio=0,
|
|
use_deg_flag=False,
|
|
**kwargs
|
|
):
|
|
"""parsing center, size, angle from 101/68/5/x landmarks
|
|
vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size
|
|
vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area
|
|
|
|
judge with pts.shape
|
|
"""
|
|
pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True))
|
|
|
|
uy = pt2[1] - pt2[0]
|
|
l = np.linalg.norm(uy)
|
|
if l <= 1e-3:
|
|
uy = np.array([0, 1], dtype=DTYPE)
|
|
else:
|
|
uy /= l
|
|
ux = np.array((uy[1], -uy[0]), dtype=DTYPE)
|
|
|
|
|
|
|
|
|
|
angle = acos(ux[0])
|
|
if ux[1] < 0:
|
|
angle = -angle
|
|
|
|
|
|
M = np.array([ux, uy])
|
|
|
|
|
|
center0 = np.mean(pts, axis=0)
|
|
rpts = (pts - center0) @ M.T
|
|
lt_pt = np.min(rpts, axis=0)
|
|
rb_pt = np.max(rpts, axis=0)
|
|
center1 = (lt_pt + rb_pt) / 2
|
|
|
|
size = rb_pt - lt_pt
|
|
if need_square:
|
|
m = max(size[0], size[1])
|
|
size[0] = m
|
|
size[1] = m
|
|
|
|
size *= scale
|
|
center = center0 + ux * center1[0] + uy * center1[1]
|
|
center = center + ux * (vx_ratio * size) + uy * \
|
|
(vy_ratio * size)
|
|
|
|
if use_deg_flag:
|
|
angle = degrees(angle)
|
|
|
|
return center, size, angle
|
|
|
|
|
|
def parse_bbox_from_landmark(pts, **kwargs):
|
|
center, size, angle = parse_rect_from_landmark(pts, **kwargs)
|
|
cx, cy = center
|
|
w, h = size
|
|
|
|
|
|
bbox = np.array([
|
|
[cx-w/2, cy-h/2],
|
|
[cx+w/2, cy-h/2],
|
|
[cx+w/2, cy+h/2],
|
|
[cx-w/2, cy+h/2]
|
|
], dtype=DTYPE)
|
|
|
|
|
|
bbox_rot = bbox.copy()
|
|
R = np.array([
|
|
[np.cos(angle), -np.sin(angle)],
|
|
[np.sin(angle), np.cos(angle)]
|
|
], dtype=DTYPE)
|
|
|
|
|
|
bbox_rot = (bbox_rot - center) @ R.T + center
|
|
|
|
return {
|
|
'center': center,
|
|
'size': size,
|
|
'angle': angle,
|
|
'bbox': bbox,
|
|
'bbox_rot': bbox_rot,
|
|
}
|
|
|
|
|
|
def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs):
|
|
left, top, right, bot = bbox
|
|
if int(right - left) != int(bot - top):
|
|
print(f'right-left {right-left} != bot-top {bot-top}')
|
|
size = right - left
|
|
|
|
src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE)
|
|
tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)
|
|
|
|
s = dsize / size
|
|
if flag_rot and angle is not None:
|
|
costheta, sintheta = cos(angle), sin(angle)
|
|
cx, cy = src_center[0], src_center[1]
|
|
tcx, tcy = tgt_center[0], tgt_center[1]
|
|
|
|
M_o2c = np.array(
|
|
[[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
|
|
[-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
|
|
dtype=DTYPE
|
|
)
|
|
else:
|
|
M_o2c = np.array(
|
|
[[s, 0, tgt_center[0] - s * src_center[0]],
|
|
[0, s, tgt_center[1] - s * src_center[1]]],
|
|
dtype=DTYPE
|
|
)
|
|
|
|
|
|
|
|
|
|
img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None))
|
|
lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None
|
|
|
|
M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)])
|
|
M_c2o = np.linalg.inv(M_o2c)
|
|
|
|
|
|
|
|
return {
|
|
'img_crop': img_crop,
|
|
'lmk_crop': lmk_crop,
|
|
'M_o2c': M_o2c,
|
|
'M_c2o': M_c2o,
|
|
}
|
|
|
|
|
|
def _estimate_similar_transform_from_pts(
|
|
pts,
|
|
dsize,
|
|
scale=1.5,
|
|
vx_ratio=0,
|
|
vy_ratio=-0.1,
|
|
flag_do_rot=True,
|
|
**kwargs
|
|
):
|
|
""" calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image
|
|
pts: landmark, 101 or 68 points or other points, Nx2
|
|
scale: the larger scale factor, the smaller face ratio
|
|
vx_ratio: x shift
|
|
vy_ratio: y shift, the smaller the y shift, the lower the face region
|
|
rot_flag: if it is true, conduct correction
|
|
"""
|
|
center, size, angle = parse_rect_from_landmark(
|
|
pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio,
|
|
use_lip=kwargs.get('use_lip', True)
|
|
)
|
|
|
|
s = dsize / size[0]
|
|
tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)
|
|
|
|
if flag_do_rot:
|
|
costheta, sintheta = cos(angle), sin(angle)
|
|
cx, cy = center[0], center[1]
|
|
tcx, tcy = tgt_center[0], tgt_center[1]
|
|
|
|
M_INV = np.array(
|
|
[[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
|
|
[-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
|
|
dtype=DTYPE
|
|
)
|
|
else:
|
|
M_INV = np.array(
|
|
[[s, 0, tgt_center[0] - s * center[0]],
|
|
[0, s, tgt_center[1] - s * center[1]]],
|
|
dtype=DTYPE
|
|
)
|
|
|
|
M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])])
|
|
M = np.linalg.inv(M_INV_H)
|
|
|
|
|
|
return M_INV, M[:2, ...]
|
|
|
|
|
|
def crop_image(img, pts: np.ndarray, **kwargs):
|
|
dsize = kwargs.get('dsize', 224)
|
|
scale = kwargs.get('scale', 1.5)
|
|
vy_ratio = kwargs.get('vy_ratio', -0.1)
|
|
|
|
M_INV, _ = _estimate_similar_transform_from_pts(
|
|
pts,
|
|
dsize=dsize,
|
|
scale=scale,
|
|
vy_ratio=vy_ratio,
|
|
flag_do_rot=kwargs.get('flag_do_rot', True),
|
|
)
|
|
|
|
img_crop = _transform_img(img, M_INV, dsize)
|
|
pt_crop = _transform_pts(pts, M_INV)
|
|
|
|
M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)])
|
|
M_c2o = np.linalg.inv(M_o2c)
|
|
|
|
ret_dct = {
|
|
'M_o2c': M_o2c,
|
|
'M_c2o': M_c2o,
|
|
'img_crop': img_crop,
|
|
'pt_crop': pt_crop,
|
|
}
|
|
|
|
return ret_dct
|
|
|
|
def average_bbox_lst(bbox_lst):
|
|
if len(bbox_lst) == 0:
|
|
return None
|
|
bbox_arr = np.array(bbox_lst)
|
|
return np.mean(bbox_arr, axis=0).tolist()
|
|
|
|
def prepare_paste_back(mask_crop, crop_M_c2o, dsize):
|
|
"""prepare mask for later image paste back
|
|
"""
|
|
mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize)
|
|
mask_ori = mask_ori.astype(np.float32) / 255.
|
|
return mask_ori
|
|
|
|
def paste_back(img_crop, M_c2o, img_ori, mask_ori):
|
|
"""paste back the image
|
|
"""
|
|
dsize = (img_ori.shape[1], img_ori.shape[0])
|
|
result = _transform_img(img_crop, M_c2o, dsize=dsize)
|
|
result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8)
|
|
return result
|
|
|