|
|
|
|
|
"""
|
|
This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .util import LayerNorm, DropPath, trunc_normal_, GRN
|
|
|
|
__all__ = ['convnextv2_tiny']
|
|
|
|
|
|
class Block(nn.Module):
|
|
""" ConvNeXtV2 Block.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
drop_path (float): Stochastic depth rate. Default: 0.0
|
|
"""
|
|
|
|
def __init__(self, dim, drop_path=0.):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
|
|
self.norm = LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(dim, 4 * dim)
|
|
self.act = nn.GELU()
|
|
self.grn = GRN(4 * dim)
|
|
self.pwconv2 = nn.Linear(4 * dim, dim)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
input = x
|
|
x = self.dwconv(x)
|
|
x = x.permute(0, 2, 3, 1)
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.grn(x)
|
|
x = self.pwconv2(x)
|
|
x = x.permute(0, 3, 1, 2)
|
|
|
|
x = input + self.drop_path(x)
|
|
return x
|
|
|
|
|
|
class ConvNeXtV2(nn.Module):
|
|
""" ConvNeXt V2
|
|
|
|
Args:
|
|
in_chans (int): Number of input image channels. Default: 3
|
|
num_classes (int): Number of classes for classification head. Default: 1000
|
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_chans=3,
|
|
depths=[3, 3, 9, 3],
|
|
dims=[96, 192, 384, 768],
|
|
drop_path_rate=0.,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
self.depths = depths
|
|
self.downsample_layers = nn.ModuleList()
|
|
stem = nn.Sequential(
|
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
|
|
)
|
|
self.downsample_layers.append(stem)
|
|
for i in range(3):
|
|
downsample_layer = nn.Sequential(
|
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
|
|
)
|
|
self.downsample_layers.append(downsample_layer)
|
|
|
|
self.stages = nn.ModuleList()
|
|
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
|
cur = 0
|
|
for i in range(4):
|
|
stage = nn.Sequential(
|
|
*[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
|
|
)
|
|
self.stages.append(stage)
|
|
cur += depths[i]
|
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6)
|
|
|
|
|
|
num_bins = kwargs.get('num_bins', 66)
|
|
num_kp = kwargs.get('num_kp', 24)
|
|
self.fc_kp = nn.Linear(dims[-1], 3 * num_kp)
|
|
|
|
|
|
self.fc_scale = nn.Linear(dims[-1], 1)
|
|
self.fc_pitch = nn.Linear(dims[-1], num_bins)
|
|
self.fc_yaw = nn.Linear(dims[-1], num_bins)
|
|
self.fc_roll = nn.Linear(dims[-1], num_bins)
|
|
self.fc_t = nn.Linear(dims[-1], 3)
|
|
self.fc_exp = nn.Linear(dims[-1], 3 * num_kp)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
|
trunc_normal_(m.weight, std=.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward_features(self, x):
|
|
for i in range(4):
|
|
x = self.downsample_layers[i](x)
|
|
x = self.stages[i](x)
|
|
return self.norm(x.mean([-2, -1]))
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
|
|
|
|
kp = self.fc_kp(x)
|
|
|
|
|
|
pitch = self.fc_pitch(x)
|
|
yaw = self.fc_yaw(x)
|
|
roll = self.fc_roll(x)
|
|
t = self.fc_t(x)
|
|
exp = self.fc_exp(x)
|
|
scale = self.fc_scale(x)
|
|
|
|
ret_dct = {
|
|
'pitch': pitch,
|
|
'yaw': yaw,
|
|
'roll': roll,
|
|
't': t,
|
|
'exp': exp,
|
|
'scale': scale,
|
|
|
|
'kp': kp,
|
|
}
|
|
|
|
return ret_dct
|
|
|
|
|
|
def convnextv2_tiny(**kwargs):
|
|
model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
|
|
return model
|
|
|