liveportrait-vid2vid / src /live_portrait_pipeline.py
ganeshblank's picture
assets
30f37fa verified
raw
history blame
30.7 kB
# coding: utf-8
"""
Pipeline of LivePortrait
"""
import matplotlib.pyplot as plt
import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
import numpy as np
import os
import os.path as osp
from rich.progress import track
from .config.argument_config import ArgumentConfig
from .config.inference_config import InferenceConfig
from .config.crop_config import CropConfig
from .utils.cropper import Cropper
from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames,concat_frame, get_fps, add_audio_to_video, has_audio_stream
from .utils.crop import _transform_img, prepare_paste_back, paste_back
from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
from .utils.rprint import rlog as log
# from .utils.viz import viz_lmk
from .live_portrait_wrapper import LivePortraitWrapper
def make_abs_path(fn):
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
class LivePortraitPipeline(object):
def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
def execute(self, args: ArgumentConfig):
# for convenience
inf_cfg = self.live_portrait_wrapper.inference_cfg
device = self.live_portrait_wrapper.device
crop_cfg = self.cropper.crop_cfg
######## process source portrait ########
img_rgb = load_image_rgb(args.source_image)
# cv2.imwrite("./img.png", img_rgb)
img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
log(f"Load source image from {args.source_image}")
crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
if crop_info is None:
raise Exception("No face detected in the source image!")
source_lmk = crop_info['lmk_crop']
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
if inf_cfg.flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
else:
img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_c_s = x_s_info['kp']
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
if flag_lip_zero:
# let lip-open scalar to be 0 at first
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
flag_lip_zero = False
else:
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
############################################
######## process driving info ########
flag_load_from_template = is_template(args.driving_info)
driving_rgb_crop_256x256_lst = None
wfp_template = None
if flag_load_from_template:
# NOTE: load from template, it is fast, but the cropping video is None
log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
template_dct = load(args.driving_info)
n_frames = template_dct['n_frames']
# set output_fps
output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
log(f'The FPS of template: {output_fps}')
if args.flag_crop_driving_video:
log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
elif osp.exists(args.driving_info) and is_video(args.driving_info):
# load from video file, AND make motion template
log(f"Load video: {args.driving_info}")
if osp.isdir(args.driving_info):
output_fps = inf_cfg.output_fps
else:
output_fps = int(get_fps(args.driving_info))
log(f'The FPS of {args.driving_info} is: {output_fps}')
log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
driving_rgb_lst = load_driving_info(args.driving_info)
######## make motion template ########
log("Start making motion template...")
if inf_cfg.flag_crop_driving_video:
ret = self.cropper.crop_driving_video(driving_rgb_lst)
log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
else:
driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
# save the motion template
I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
wfp_template = remove_suffix(args.driving_info) + '.pkl'
dump(wfp_template, template_dct)
log(f"Dump motion template to {wfp_template}")
n_frames = I_d_lst.shape[0]
else:
raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
#########################################
######## prepare for pasteback ########
I_p_pstbk_lst = None
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
I_p_pstbk_lst = []
log("Prepared pasteback mask done.")
#########################################
I_p_lst = []
R_d_0, x_d_0_info = None, None
for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
x_d_i_info = template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, device)
R_d_i = x_d_i_info['R_d']
if i == 0:
R_d_0 = R_d_i
x_d_0_info = x_d_i_info
if inf_cfg.flag_relative_motion:
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
R_new = R_d_i
delta_new = x_d_i_info['exp']
scale_new = x_s_info['scale']
t_new = x_d_i_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
# Algorithm 1:
if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# without stitching or retargeting
if flag_lip_zero:
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
else:
pass
elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# with stitching and without retargeting
if flag_lip_zero:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
else:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
else:
eyes_delta, lip_delta = None, None
if inf_cfg.flag_eye_retargeting:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
if inf_cfg.flag_lip_retargeting:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
if inf_cfg.flag_relative_motion: # use x_s
x_d_i_new = x_s + \
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
if inf_cfg.flag_stitching:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
# TODO: pasteback is slow, considering optimize it using multi-threading or GPU
I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
I_p_pstbk_lst.append(I_p_pstbk)
mkdir(args.output_dir)
wfp_concat = None
flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
######### build final concact result #########
# driving frame | source image | generation, or source image | generation
frames_concatenated = concat_frame(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
if flag_has_audio:
# final result with concact
wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
# save drived result
wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
else:
images2video(I_p_lst, wfp=wfp, fps=output_fps)
######### build final result #########
if flag_has_audio:
wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
log(f"Replace {wfp} with {wfp_with_audio}")
# final log
if wfp_template not in (None, ''):
log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
log(f'Animated video: {wfp}')
log(f'Animated video with concact: {wfp_concat}')
return wfp, wfp_concat
def execute_source_video(self, args: ArgumentConfig):
# for convenience
inf_cfg = self.live_portrait_wrapper.inference_cfg
device = self.live_portrait_wrapper.device
crop_cfg = self.cropper.crop_cfg
# prepare source video
source_driving_rgb_crop_256x256_lst = None
source_wfp_template = None
if osp.exists(args.source_driving_info) and is_video(args.source_driving_info):
# load from video file, AND make motion template
log(f"Load video: {args.source_driving_info}")
if osp.isdir(args.source_driving_info):
output_fps = inf_cfg.output_fps
else:
output_fps = int(get_fps(args.source_driving_info))
log(f'The FPS of {args.source_driving_info} is: {output_fps}')
log(f"Load video file (mp4 mov avi etc...): {args.source_driving_info}")
source_driving_rgb_lst = load_driving_info(args.source_driving_info)
######## process source portrait ########
crop_info_lst = []
x_s_info_lst = []
x_c_s_lst=[]
R_s_lst=[]
f_s_lst=[]
x_s_lst=[]
img_crop_256x256_lst = []
img_rgb_lst = []
for img_rgb in source_driving_rgb_lst:
# img_rgb = load_image_rgb(args.source_image)
# cv2.imwrite("./img.png", img_rgb)
img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
if crop_info is None:
raise Exception("No face detected in the source image!")
source_lmk = crop_info['lmk_crop']
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
img_crop_256x256_lst.append(img_crop_256x256)
if inf_cfg.flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
else:
img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_c_s = x_s_info['kp']
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
x_c_s_lst.append(x_c_s)
R_s_lst.append(R_s)
f_s_lst.append(f_s)
x_s_lst.append(x_s)
x_s_info_lst.append(x_s_info)
crop_info_lst.append(crop_info)
img_rgb_lst.append(img_rgb)
flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
if flag_lip_zero:
# let lip-open scalar to be 0 at first
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
flag_lip_zero = False
else:
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
############################################
######## make motion template ########
log("Start making motion template...")
if inf_cfg.flag_crop_source_video:
ret = self.cropper.crop_driving_video(source_driving_rgb_lst)
log(f'source video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
source_driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
source_driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_driving_rgb_crop_lst]
else:
source_driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_driving_rgb_lst)
source_driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_driving_rgb_lst] # force to resize to 256x256
source_c_d_eyes_lst, source_c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(source_driving_lmk_crop_lst)
# save the motion template
source_I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(source_driving_rgb_crop_256x256_lst)
source_template_dct = self.make_motion_template(source_I_d_lst, source_c_d_eyes_lst, source_c_d_lip_lst, output_fps=output_fps)
source_wfp_template = remove_suffix(args.source_driving_info) + '.pkl'
dump(source_wfp_template, source_template_dct)
log(f"Dump motion template to {source_wfp_template}")
source_n_frames = source_I_d_lst.shape[0]
else:
raise Exception(f"{args.source_driving_info} not exists or unsupported driving info types!")
######## process driving info ########
flag_load_from_template = is_template(args.driving_info)
driving_rgb_crop_256x256_lst = None
wfp_template = None
if flag_load_from_template:
# NOTE: load from template, it is fast, but the cropping video is None
log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
template_dct = load(args.driving_info)
n_frames = template_dct['n_frames']
# set output_fps
output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
log(f'The FPS of template: {output_fps}')
if args.flag_crop_driving_video:
log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
elif osp.exists(args.driving_info) and is_video(args.driving_info):
# load from video file, AND make motion template
log(f"Load video: {args.driving_info}")
if osp.isdir(args.driving_info):
output_fps = inf_cfg.output_fps
else:
output_fps = int(get_fps(args.driving_info))
log(f'The FPS of {args.driving_info} is: {output_fps}')
log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
driving_rgb_lst = load_driving_info(args.driving_info)
######## make motion template ########
log("Start making motion template...")
if inf_cfg.flag_crop_driving_video:
ret = self.cropper.crop_driving_video(driving_rgb_lst)
log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
else:
driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
# save the motion template
I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
wfp_template = remove_suffix(args.driving_info) + '.pkl'
dump(wfp_template, template_dct)
log(f"Dump motion template to {wfp_template}")
n_frames = I_d_lst.shape[0]
else:
raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
#########################################
n_frame = min(n_frames,source_n_frames)
I_p_lst = []
R_d_0, x_d_0_info = None, None
######## prepare for pasteback ########
I_p_pstbk_lst = None
mask_ori_float_lst=[]
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
for i in range(n_frame):
mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info_lst[i]['M_c2o'], dsize=(img_rgb_lst[i].shape[1], img_rgb_lst[i].shape[0]))
mask_ori_float_lst.append(mask_ori_float)
I_p_pstbk_lst = []
log("Prepared pasteback mask done.")
#########################################
for i in track(range(n_frame), description='🚀Animating...', total=n_frame):
x_d_i_info = template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, device)
R_d_i = x_d_i_info['R_d']
if i == 0:
R_d_0 = R_d_i
x_d_0_info = x_d_i_info
if inf_cfg.flag_relative_motion:
R_new = R_s_lst[i]
delta_new = x_d_i_info['exp'] - x_d_0_info['exp']
scale_new = x_s_info_lst[i]['scale']
t_new = x_s_info_lst[i]['t']
# R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s_lst[i]
# delta_new = x_s_info_lst[i]['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
# scale_new = x_s_info_lst[i]['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
# t_new = x_s_info_lst[i]['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
# R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s_lst[i]
# delta_new =x_d_i_info['exp'] - x_d_0_info['exp']
# scale_new = x_s_info_lst[i]['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
# t_new = x_s_info_lst[i]['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
R_new = R_d_i
delta_new = x_d_i_info['exp']
scale_new = x_s_info_lst[i]['scale']
t_new = x_d_i_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s_lst[i] @ R_new + delta_new) + t_new
# Algorithm 1:
if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# without stitching or retargeting
if flag_lip_zero:
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s_lst[i].shape[1], 3)
else:
pass
elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# with stitching and without retargeting
if flag_lip_zero:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s_lst[i].shape[1], 3)
else:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new)
else:
eyes_delta, lip_delta = None, None
if inf_cfg.flag_eye_retargeting:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
# ∆_eyes,i = R_eyes(x_s_lst[i]; c_s,eyes, c_d,eyes,i)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_lst[i], combined_eye_ratio_tensor)
if inf_cfg.flag_lip_retargeting:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s_lst[i]; c_s,lip, c_d,lip,i)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_lst[i], combined_lip_ratio_tensor)
if inf_cfg.flag_relative_motion: # use x_s_lst[i]
x_d_i_new = x_s_lst[i] + \
(eyes_delta.reshape(-1, x_s_lst[i].shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s_lst[i].shape[1], 3) if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta.reshape(-1, x_s_lst[i].shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s_lst[i].shape[1], 3) if lip_delta is not None else 0)
if inf_cfg.flag_stitching:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s_lst[i], x_s_lst[i], x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
# TODO: pasteback is slow, considering optimize it using multi-threading or GPU
I_p_pstbk = paste_back(I_p_i, crop_info_lst[i]['M_c2o'], img_rgb_lst[i], mask_ori_float_lst[i])
I_p_pstbk_lst.append(I_p_pstbk)
# end for
mkdir(args.output_dir)
wfp_concat = None
flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
######### build final concact result #########
# driving frame | source image | generation, or source image | generation
frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256_lst, I_p_lst)
wfp_concat = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}_concat.mp4')
images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
if flag_has_audio:
# final result with concact
wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}_concat_with_audio.mp4')
add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
# save drived result
wfp = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}.mp4')
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
else:
images2video(I_p_lst, wfp=wfp, fps=output_fps)
######### build final result #########
if flag_has_audio:
wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
log(f"Replace {wfp} with {wfp_with_audio}")
# final log
if wfp_template not in (None, ''):
log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
log(f'Animated video: {wfp}')
log(f'Animated video with concact: {wfp_concat}')
return wfp, wfp_concat
def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
n_frames = I_d_lst.shape[0]
template_dct = {
'n_frames': n_frames,
'output_fps': kwargs.get('output_fps', 25),
'motion': [],
'c_d_eyes_lst': [],
'c_d_lip_lst': [],
}
for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
# collect s_d, R_d, δ_d and t_d for inference
I_d_i = I_d_lst[i]
x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
item_dct = {
'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
'R_d': R_d_i.cpu().numpy().astype(np.float32),
'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
}
template_dct['motion'].append(item_dct)
c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
template_dct['c_d_eyes_lst'].append(c_d_eyes)
c_d_lip = c_d_lip_lst[i].astype(np.float32)
template_dct['c_d_lip_lst'].append(c_d_lip)
return template_dct