liveportrait-vid2vid / src /gradio_pipeline.py
ganeshblank's picture
assets
30f37fa verified
raw
history blame
7.02 kB
# coding: utf-8
"""
Pipeline for gradio
"""
import gradio as gr
from .config.argument_config import ArgumentConfig
from .live_portrait_pipeline import LivePortraitPipeline
from .utils.io import load_img_online
from .utils.rprint import rlog as log
from .utils.crop import prepare_paste_back, paste_back
from .utils.camera import get_rotation_matrix
def update_args(args, user_args):
"""update the args according to user inputs
"""
for k, v in user_args.items():
if hasattr(args, k):
setattr(args, k, v)
return args
class GradioPipeline(LivePortraitPipeline):
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
super().__init__(inference_cfg, crop_cfg)
# self.live_portrait_wrapper = self.live_portrait_wrapper
self.args = args
def execute_video(
self,
input_image_path,
input_video_path,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input
):
""" for video driven potrait animation
"""
if input_image_path is not None and input_video_path is not None:
args_user = {
'source_image': input_image_path,
'driving_info': input_video_path,
'flag_relative': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
'flag_crop_driving_video': flag_crop_driving_video_input
}
# update config from user input
self.args = update_args(self.args, args_user)
self.live_portrait_wrapper.update_config(self.args.__dict__)
self.cropper.update_config(self.args.__dict__)
# video driven animation
video_path, video_path_concat = self.execute(self.args)
gr.Info("Run successfully!", duration=2)
return video_path, video_path_concat,
else:
raise gr.Error("The input source portrait or driving video hasn't been prepared yet πŸ’₯!", duration=5)
def execute_s_video(
self,
input_s_video_path,
input_video_path,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input
):
""" for video driven source to video animation
"""
if input_s_video_path is not None and input_video_path is not None:
args_user = {
'source_driving_info': input_s_video_path,
'driving_info': input_video_path,
'flag_relative': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
'flag_crop_driving_video': flag_crop_driving_video_input
}
# update config from user input
self.args = update_args(self.args, args_user)
self.live_portrait_wrapper.update_config(self.args.__dict__)
self.cropper.update_config(self.args.__dict__)
# video driven animation
video_path, video_path_concat = self.execute_source_video(self.args)
gr.Info("Run successfully!", duration=3)
return video_path, video_path_concat,
else:
raise gr.Error("The input source video or driving video hasn't been prepared yet πŸ’₯!", duration=5)
def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
""" for single image retargeting
"""
# disposable feature
f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
self.prepare_retargeting(input_image, flag_do_crop)
if input_eye_ratio is None or input_lip_ratio is None:
raise gr.Error("Invalid ratio input πŸ’₯!", duration=5)
else:
inference_cfg = self.live_portrait_wrapper.inference_cfg
x_s_user = x_s_user.to(self.live_portrait_wrapper.device)
f_s_user = f_s_user.to(self.live_portrait_wrapper.device)
# βˆ†_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
# βˆ†_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
num_kp = x_s_user.shape[1]
# default: use x_s
x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
# D(W(f_s; x_s, xβ€²_d))
out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
out = self.live_portrait_wrapper.parse_output(out['out'])[0]
out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
gr.Info("Run successfully!", duration=2)
return out, out_to_ori_blend
def prepare_retargeting(self, input_image, flag_do_crop=True):
""" for single image retargeting
"""
if input_image is not None:
# gr.Info("Upload successfully!", duration=2)
inference_cfg = self.live_portrait_wrapper.inference_cfg
######## process source portrait ########
img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
log(f"Load source image from {input_image}.")
crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
if flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
else:
I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
############################################
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
source_lmk_user = crop_info['lmk_crop']
crop_M_c2o = crop_info['M_c2o']
mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
else:
# when press the clear button, go here
raise gr.Error("The retargeting input hasn't been prepared yet πŸ’₯!", duration=5)