|
import gradio as gr |
|
import os |
|
import shutil |
|
|
|
|
|
import numpy as np |
|
from scipy.io import wavfile |
|
from pydub import AudioSegment |
|
|
|
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD") |
|
|
|
""" |
|
model_ids = [ |
|
'suno/bark', |
|
] |
|
|
|
for model_id in model_ids: |
|
model_name = model_id.split('/')[-1] |
|
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') |
|
|
|
from TTS.tts.configs.bark_config import BarkConfig |
|
from TTS.tts.models.bark import Bark |
|
|
|
#os.environ['CUDA_VISIBLE_DEVICES'] = '1' |
|
config = BarkConfig() |
|
model = Bark.init_from_config(config) |
|
model.load_checkpoint(config, checkpoint_dir="checkpoints/bark", eval=True) |
|
""" |
|
from TTS.api import TTS |
|
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True) |
|
|
|
def cut_wav(input_path, max_duration): |
|
|
|
audio = AudioSegment.from_wav(input_path) |
|
|
|
|
|
audio_duration = len(audio) / 1000 |
|
|
|
|
|
cut_duration = min(max_duration, audio_duration) |
|
|
|
|
|
cut_audio = audio[:int(cut_duration * 1000)] |
|
|
|
|
|
file_name = os.path.splitext(os.path.basename(input_path))[0] |
|
|
|
|
|
output_path = f"{file_name}_cut.wav" |
|
|
|
|
|
cut_audio.export(output_path, format="wav") |
|
|
|
return output_path |
|
|
|
def infer(prompt, input_wav_file): |
|
|
|
|
|
source_path = input_wav_file |
|
|
|
|
|
destination_directory = "bark_voices" |
|
|
|
|
|
file_name = os.path.splitext(os.path.basename(source_path))[0] |
|
|
|
|
|
destination_path = os.path.join(destination_directory, file_name) |
|
|
|
|
|
os.makedirs(destination_path, exist_ok=True) |
|
|
|
|
|
shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav")) |
|
|
|
""" |
|
text = prompt |
|
|
|
print("SYNTHETIZING...") |
|
# with random speaker |
|
#output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None) |
|
|
|
# cloning a speaker. |
|
# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz` |
|
output_dict = model.synthesize( |
|
text, |
|
config, |
|
speaker_id=f"{file_name}", |
|
voice_dirs="bark_voices/", |
|
gpu=True |
|
) |
|
|
|
print(output_dict) |
|
|
|
|
|
|
|
sample_rate = 24000 # Replace with the actual sample rate |
|
print("WRITING WAVE FILE") |
|
wavfile.write( |
|
'output.wav', |
|
sample_rate, |
|
output_dict['wav'] |
|
) |
|
""" |
|
|
|
tts.tts_to_file(text=prompt, |
|
file_path="output.wav", |
|
voice_dir="bark_voices/", |
|
speaker=f"{file_name}") |
|
|
|
|
|
contents = os.listdir(f"bark_voices/{file_name}") |
|
|
|
|
|
for item in contents: |
|
print(item) |
|
|
|
tts_video = gr.make_waveform(audio="output.wav") |
|
|
|
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True) |
|
|
|
|
|
css = """ |
|
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;} |
|
img[src*='#center'] { |
|
display: block; |
|
margin: auto; |
|
} |
|
.footer { |
|
margin-bottom: 45px; |
|
margin-top: 10px; |
|
text-align: center; |
|
border-bottom: 1px solid #e5e5e5; |
|
} |
|
.footer>p { |
|
font-size: .8rem; |
|
display: inline-block; |
|
padding: 0 10px; |
|
transform: translateY(10px); |
|
background: white; |
|
} |
|
.dark .footer { |
|
border-color: #303030; |
|
} |
|
.dark .footer>p { |
|
background: #0b0f19; |
|
} |
|
|
|
.disclaimer { |
|
text-align: left; |
|
} |
|
.disclaimer > p { |
|
font-size: .8rem; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
|
|
gr.Markdown(""" |
|
<h1 style="text-align: center;">Coqui Bark Voice Cloning</h1> |
|
<p style="text-align: center;"> |
|
Clone any voice in less than 2 minutes with this <a href="https://tts.readthedocs.io/en/dev/models/bark.html" target="_blank">Coqui TSS + Bark</a> demo ! <br /> |
|
Upload a clean 20 seconds WAV file of the voice you want to clone, <br /> |
|
type your text-to-speech prompt and hit submit ! <br /> |
|
</p> |
|
|
|
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/instant-TTS-Bark-cloning?duplicate=true) |
|
|
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox( |
|
label="Text to speech prompt" |
|
) |
|
|
|
if file_upload_available == "True": |
|
audio_in = gr.Audio( |
|
label="WAV voice to clone", |
|
type="filepath", |
|
source="upload" |
|
) |
|
else: |
|
audio_in = gr.Audio( |
|
label="WAV voice to clone", |
|
type="filepath", |
|
source="upload", |
|
interactive = False |
|
) |
|
|
|
submit_btn = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
|
|
cloned_out = gr.Audio( |
|
label="Text to speech output" |
|
) |
|
|
|
video_out = gr.Video( |
|
label = "Waveform video" |
|
) |
|
|
|
npz_file = gr.File( |
|
label = ".npz file", |
|
visible = False |
|
) |
|
|
|
|
|
|
|
gr.Examples( |
|
examples = [ |
|
[ |
|
"Once upon a time, in a cozy little shell, lived a friendly crab named Crabby. Crabby loved his cozy home, but he always felt like something was missing.", |
|
"./examples/en_speaker_6.wav", |
|
], |
|
[ |
|
"It was a typical afternoon in the bustling city, the sun shining brightly through the windows of the packed courtroom. Three people sat at the bar, their faces etched with worry and anxiety. ", |
|
"./examples/en_speaker_9.wav", |
|
], |
|
], |
|
fn = infer, |
|
inputs = [ |
|
prompt, |
|
audio_in |
|
], |
|
outputs = [ |
|
cloned_out, |
|
video_out, |
|
npz_file |
|
], |
|
cache_examples = True |
|
) |
|
|
|
gr.HTML(""" |
|
<div class="footer"> |
|
<p> |
|
Coqui + Bark Voice Cloning Demo by 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> |
|
</p> |
|
</div> |
|
<div class="disclaimer"> |
|
<h3> * DISCLAIMER </h3> |
|
<p> |
|
I hold no responsibility for the utilization or outcomes of audio content produced using the semantic constructs generated by this model. <br /> |
|
Please ensure that any application of this technology remains within legal and ethical boundaries. <br /> |
|
It is important to utilize this technology for ethical and legal purposes, upholding the standards of creativity and innovation. |
|
</p> |
|
</div> |
|
""") |
|
|
|
submit_btn.click( |
|
fn = infer, |
|
inputs = [ |
|
prompt, |
|
audio_in |
|
], |
|
outputs = [ |
|
cloned_out, |
|
video_out, |
|
npz_file |
|
] |
|
) |
|
|
|
demo.queue(api_open=False, max_size=20).launch() |