|
import gradio as gr |
|
from PIL import Image |
|
from io import BytesIO |
|
import torch |
|
import os |
|
from diffusers import DiffusionPipeline, DDIMScheduler |
|
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') |
|
|
|
has_cuda = torch.cuda.is_available() |
|
device = "cuda" |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
safety_checker=None, |
|
custom_pipeline="imagic_stable_diffusion", |
|
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) |
|
).to(device) |
|
|
|
generator = torch.Generator("cuda").manual_seed(0) |
|
|
|
def infer(prompt, init_image): |
|
init_image = Image.open(init_image).convert("RGB") |
|
init_image = init_image.resize((128, 128)) |
|
|
|
res = pipe.train( |
|
prompt, |
|
init_image, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
generator=generator, |
|
text_embedding_optimization_steps=100, |
|
model_fine_tuning_optimization_steps=500) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 'trained success' |
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-top: 7px;"> |
|
Imagic Stable Diffusion • Community Pipeline |
|
</h1> |
|
</div> |
|
<p style="margin-top: 10px; font-size: 94%"> |
|
Text-Based Real Image Editing with Diffusion Models |
|
<br />This pipeline aims to implement <a href="https://arxiv.org/abs/2210.09276" target="_blank">this paper</a> to Stable Diffusion, allowing for real-world image editing. |
|
|
|
</p> |
|
<br /><img src="https://user-images.githubusercontent.com/788417/196388568-4ee45edd-e990-452c-899f-c25af32939be.png" style="margin:7px 0 20px;"/> |
|
|
|
<p style="font-size: 94%"> |
|
You can skip the queue by duplicating this space: |
|
<a style="display: flex;align-items: center;justify-content: center;height: 30px;" href="https://huggingface.co/spaces/fffiloni/imagic-stable-diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> |
|
</p> |
|
|
|
</div> |
|
""" |
|
|
|
article = """ |
|
<div class="footer"> |
|
<p><a href="https://github.com/huggingface/diffusers/tree/main/examples/community#imagic-stable-diffusion" target="_blank">Community pipeline</a> |
|
baked by <a href="https://github.com/MarkRich" style="text-decoration: underline;" target="_blank">Mark Rich</a> - |
|
Gradio Demo by 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> |
|
</p> |
|
</div> |
|
""" |
|
|
|
css = ''' |
|
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} |
|
a {text-decoration-line: underline; font-weight: 600;} |
|
.footer { |
|
margin-bottom: 45px; |
|
margin-top: 35px; |
|
text-align: center; |
|
border-bottom: 1px solid #e5e5e5; |
|
} |
|
.footer>p { |
|
font-size: .8rem; |
|
display: inline-block; |
|
padding: 0 10px; |
|
transform: translateY(10px); |
|
background: white; |
|
} |
|
.dark .footer { |
|
border-color: #303030; |
|
} |
|
.dark .footer>p { |
|
background: #0b0f19; |
|
} |
|
''' |
|
|
|
|
|
with gr.Blocks(css=css) as block: |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(title) |
|
|
|
prompt_input = gr.Textbox(label="Target text", placeholder="Describe the image with what you want to change about the subject") |
|
image_init = gr.Image(source="upload", type="filepath",label="Input Image") |
|
|
|
submit_btn = gr.Button("Train") |
|
|
|
image_output = gr.Image(label="Edited image") |
|
text_output = gr.Image(label="trained status") |
|
|
|
gr.HTML(article) |
|
|
|
submit_btn.click(fn=infer, inputs=[prompt_input,image_init], outputs=[text_output]) |
|
|
|
block.queue(max_size=12).launch(show_api=False) |