fffiloni's picture
get rid of sleep time
f0b11a9 verified
raw
history blame
11.4 kB
import gradio as gr
from PIL import Image
from urllib.parse import urlparse
import requests
import time
import os
from utils.gradio_helpers import parse_outputs, process_outputs
# Function to verify the image file type and resize it if necessary
def preprocess_image(image_path):
# Check if the file exists
if not os.path.exists(image_path):
raise FileNotFoundError(f"No such file: '{image_path}'")
# Get the file extension and make sure it's a valid image format
valid_extensions = ['jpg', 'jpeg', 'png', 'webp']
file_extension = image_path.split('.')[-1].lower()
if file_extension not in valid_extensions:
raise ValueError("Invalid file type. Only JPG, PNG, and WEBP are allowed.")
# Open the image
with Image.open(image_path) as img:
width, height = img.size
# Check if any dimension exceeds 1024 pixels
if width > 1024 or height > 1024:
# Calculate the new size while maintaining aspect ratio
if width > height:
new_width = 1024
new_height = int((new_width / width) * height)
else:
new_height = 1024
new_width = int((new_height / height) * width)
# Resize the image
img_resized = img.resize((new_width, new_height), Image.LANCZOS)
print(f"Resized image to {new_width}x{new_height}.")
# Save the resized image as 'resized_image.jpg'
output_path = 'resized_image.jpg'
img_resized.save(output_path, 'JPEG')
print(f"Resized image saved as {output_path}")
return output_path
else:
print("Image size is within the limit, no resizing needed.")
return image_path
def display_uploaded_image(image_in):
return image_in
def reset_parameters():
return gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0)
names = ['image', 'rotate_pitch', 'rotate_yaw', 'rotate_roll', 'blink', 'eyebrow', 'wink', 'pupil_x', 'pupil_y', 'aaa', 'eee', 'woo', 'smile', 'src_ratio', 'sample_ratio', 'crop_factor', 'output_format', 'output_quality']
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
headers = {'Content-Type': 'application/json'}
payload = {"input": {}}
base_url = "http://0.0.0.0:7860"
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/file=" + value
if value is not None and value != "":
payload["input"][key] = value
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
#If the output component is JSON return the entire output response
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
time.sleep(1)
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {response.status_code}")
css = '''
#col-container{max-width: 720px;margin: 0 auto;}
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Expression Editor")
gr.Markdown("Demo for expression-editor cog image by fofr")
with gr.Row():
with gr.Column():
image = gr.Image(
label="Input image",
sources=["upload"],
type="filepath",
height=180
)
with gr.Tab("HEAD"):
with gr.Column():
rotate_pitch = gr.Slider(
label="Rotate Up-Down",
value=0,
minimum=-20, maximum=20
)
rotate_yaw = gr.Slider(
label="Rotate Left-Right turn",
value=0,
minimum=-20, maximum=20
)
rotate_roll = gr.Slider(
label="Rotate Left-Right tilt", value=0,
minimum=-20, maximum=20
)
with gr.Tab("EYES"):
with gr.Column():
eyebrow = gr.Slider(
label="Eyebrow", value=0,
minimum=-10, maximum=15
)
with gr.Row():
blink = gr.Slider(
label="Blink", value=0,
minimum=-20, maximum=5
)
wink = gr.Slider(
label="Wink", value=0,
minimum=0, maximum=25
)
with gr.Row():
pupil_x = gr.Slider(
label="Pupil X", value=0,
minimum=-15, maximum=15
)
pupil_y = gr.Slider(
label="Pupil Y", value=0,
minimum=-15, maximum=15
)
with gr.Tab("MOUTH"):
with gr.Column():
with gr.Row():
aaa = gr.Slider(
label="Aaa", value=0,
minimum=-30, maximum=120
)
eee = gr.Slider(
label="Eee", value=0,
minimum=-20, maximum=15
)
woo = gr.Slider(
label="Woo", value=0,
minimum=-20, maximum=15
)
smile = gr.Slider(
label="Smile", value=0,
minimum=-0.3, maximum=1.3
)
with gr.Tab("More Settings"):
with gr.Column():
src_ratio = gr.Number(
label="Src Ratio", info='''Source ratio''', value=1
)
sample_ratio = gr.Slider(
label="Sample Ratio", info='''Sample ratio''', value=1,
minimum=-0.2, maximum=1.2
)
crop_factor = gr.Slider(
label="Crop Factor", info='''Crop factor''', value=1.7,
minimum=1.5, maximum=2.5
)
output_format = gr.Dropdown(
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
)
output_quality = gr.Number(
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=95
)
with gr.Row():
reset_btn = gr.Button("Reset")
submit_btn = gr.Button("Submit")
with gr.Column():
result_image = gr.Image(elem_id="top")
gr.HTML("""
<div style="display: flex; flex-direction: column;justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/expression-editor?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space">
</a>
</p>
<p>to skip the queue and enjoy faster inference on the GPU of your choice </p>
</div>
""")
inputs = [image, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile, src_ratio, sample_ratio, crop_factor, output_format, output_quality]
outputs = [result_image]
image.upload(
fn = preprocess_image,
inputs = [image],
outputs = [image],
queue = False
)
reset_btn.click(
fn = reset_parameters,
inputs = None,
outputs = [rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile],
queue = False
).then(
fn=predict,
inputs=inputs,
outputs=outputs,
show_api=False
)
submit_btn.click(
fn=predict,
inputs=inputs,
outputs=outputs,
show_api=False
)
rotate_pitch.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
rotate_yaw.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
rotate_roll.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
blink.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
eyebrow.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
wink.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
pupil_x.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
pupil_y.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
aaa.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
eee.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
woo.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
smile.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
demo.queue(api_open=False).launch(share=False, show_error=True, show_api=False)