Spaces: Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,28 @@ from datetime import datetime
|
|
19 |
from torchao.quantization import quantize_, int8_weight_only
|
20 |
import gc
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
import requests
|
23 |
import tarfile
|
24 |
|
@@ -78,6 +100,8 @@ snapshot_download(
|
|
78 |
local_dir="./pretrained_weights/sd-image-variations-diffusers"
|
79 |
)
|
80 |
|
|
|
|
|
81 |
# Download and place the Whisper model in the "audio_processor" folder
|
82 |
def download_whisper_model():
|
83 |
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
|
@@ -118,7 +142,7 @@ elif ffmpeg_path not in os.getenv('PATH'):
|
|
118 |
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
|
119 |
|
120 |
|
121 |
-
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed):
|
122 |
gc.collect()
|
123 |
torch.cuda.empty_cache()
|
124 |
torch.cuda.ipc_collect()
|
@@ -216,6 +240,10 @@ def generate(image_input, audio_input, pose_input, width, height, length, steps,
|
|
216 |
seed = random.randint(100, 1000000)
|
217 |
generator = torch.manual_seed(seed)
|
218 |
|
|
|
|
|
|
|
|
|
219 |
inputs_dict = {
|
220 |
"refimg": image_input,
|
221 |
"audio": audio_input,
|
@@ -289,25 +317,36 @@ def generate(image_input, audio_input, pose_input, width, height, length, steps,
|
|
289 |
|
290 |
with gr.Blocks() as demo:
|
291 |
gr.Markdown("""
|
292 |
-
|
293 |
-
<h2 style="font-size: 30px;text-align: center;">EchoMimicV2</h2>
|
294 |
-
</div>
|
295 |
-
<div style="text-align: center;">
|
296 |
-
<a href="https://github.com/antgroup/echomimic_v2">🌐 Github</a> |
|
297 |
-
<a href="https://arxiv.org/abs/2411.10061">📜 arXiv </a>
|
298 |
-
</div>
|
299 |
-
<div style="text-align: center; font-weight: bold; color: red;">
|
300 |
-
⚠️ This demonstration is for academic research and experiential use only.
|
301 |
-
</div>
|
302 |
|
|
|
303 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
with gr.Column():
|
305 |
with gr.Row():
|
306 |
with gr.Column():
|
307 |
with gr.Group():
|
308 |
image_input = gr.Image(label="Image Input (Auto Scaling)", type="filepath")
|
309 |
-
audio_input = gr.Audio(label="Audio Input", type="filepath")
|
310 |
-
pose_input = gr.Textbox(label="Pose Input (Directory Path)", placeholder="Please enter the directory path for pose data.", value="assets/halfbody_demo/pose/01")
|
311 |
with gr.Accordion("Advanced Settings", open=False):
|
312 |
with gr.Row():
|
313 |
width = gr.Number(label="Width (multiple of 16, recommended: 768)", value=768)
|
@@ -352,4 +391,4 @@ with gr.Blocks() as demo:
|
|
352 |
|
353 |
if __name__ == "__main__":
|
354 |
demo.queue()
|
355 |
-
demo.launch(
|
|
|
19 |
from torchao.quantization import quantize_, int8_weight_only
|
20 |
import gc
|
21 |
|
22 |
+
import tempfile
|
23 |
+
from pydub import AudioSegment
|
24 |
+
|
25 |
+
def cut_audio_to_5_seconds(audio_path):
|
26 |
+
try:
|
27 |
+
# Load the audio file
|
28 |
+
audio = AudioSegment.from_file(audio_path)
|
29 |
+
|
30 |
+
# Trim to a maximum of 5 seconds (5000 milliseconds)
|
31 |
+
trimmed_audio = audio[:5000]
|
32 |
+
|
33 |
+
# Create a temporary directory
|
34 |
+
temp_dir = tempfile.mkdtemp()
|
35 |
+
output_path = os.path.join(temp_dir, "trimmed_audio.wav")
|
36 |
+
|
37 |
+
# Export the trimmed audio
|
38 |
+
trimmed_audio.export(output_path, format="wav")
|
39 |
+
|
40 |
+
return output_path
|
41 |
+
except Exception as e:
|
42 |
+
return f"An error occurred while trying to trim audio: {str(e)}"
|
43 |
+
|
44 |
import requests
|
45 |
import tarfile
|
46 |
|
|
|
100 |
local_dir="./pretrained_weights/sd-image-variations-diffusers"
|
101 |
)
|
102 |
|
103 |
+
is_shared_ui = True if "fffiloni/echomimic-v2" in os.environ['SPACE_ID'] else False
|
104 |
+
|
105 |
# Download and place the Whisper model in the "audio_processor" folder
|
106 |
def download_whisper_model():
|
107 |
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
|
|
|
142 |
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
|
143 |
|
144 |
|
145 |
+
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed, progress=gr.Progress(track_tqdm=True)):
|
146 |
gc.collect()
|
147 |
torch.cuda.empty_cache()
|
148 |
torch.cuda.ipc_collect()
|
|
|
240 |
seed = random.randint(100, 1000000)
|
241 |
generator = torch.manual_seed(seed)
|
242 |
|
243 |
+
if is_shared_ui:
|
244 |
+
audio_input = cut_audio_to_5_seconds(audio_input)
|
245 |
+
print(f"Trimmed audio saved at: {audio_input}")
|
246 |
+
|
247 |
inputs_dict = {
|
248 |
"refimg": image_input,
|
249 |
"audio": audio_input,
|
|
|
317 |
|
318 |
with gr.Blocks() as demo:
|
319 |
gr.Markdown("""
|
320 |
+
# EchoMimicV2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
⚠️ This demonstration is for academic research and experiential use only.
|
323 |
""")
|
324 |
+
gr.HTML("""
|
325 |
+
<div style="display:flex;column-gap:4px;">
|
326 |
+
<a href="https://github.com/antgroup/echomimic_v2">
|
327 |
+
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
328 |
+
</a>
|
329 |
+
<a href="https://antgroup.github.io/ai/echomimic_v2/">
|
330 |
+
<img src='https://img.shields.io/badge/Project-Page-green'>
|
331 |
+
</a>
|
332 |
+
<a href="https://arxiv.org/abs/2411.10061">
|
333 |
+
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
|
334 |
+
</a>
|
335 |
+
<a href="https://huggingface.co/spaces/fffiloni/echomimic-v2?duplicate=true">
|
336 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
|
337 |
+
</a>
|
338 |
+
<a href="https://huggingface.co/fffiloni">
|
339 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
|
340 |
+
</a>
|
341 |
+
</div>
|
342 |
+
""")
|
343 |
with gr.Column():
|
344 |
with gr.Row():
|
345 |
with gr.Column():
|
346 |
with gr.Group():
|
347 |
image_input = gr.Image(label="Image Input (Auto Scaling)", type="filepath")
|
348 |
+
audio_input = gr.Audio(label="Audio Input - max 5 seconds on shared UI", type="filepath")
|
349 |
+
# pose_input = gr.Textbox(label="Pose Input (Directory Path)", placeholder="Please enter the directory path for pose data.", value="assets/halfbody_demo/pose/01")
|
350 |
with gr.Accordion("Advanced Settings", open=False):
|
351 |
with gr.Row():
|
352 |
width = gr.Number(label="Width (multiple of 16, recommended: 768)", value=768)
|
|
|
391 |
|
392 |
if __name__ == "__main__":
|
393 |
demo.queue()
|
394 |
+
demo.launch(show_api=False, show_error=True, ssr_mode=False)
|