echomimic-v2 / infer.py
fffiloni's picture
Migrated from GitHub
6f199b8 verified
raw
history blame
8.35 kB
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
import sys
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from decord import VideoReader
from moviepy.editor import VideoFileClip, AudioFileClip
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/prompts/infer.yaml")
parser.add_argument("-W", type=int, default=768)
parser.add_argument("-H", type=int, default=768)
parser.add_argument("-L", type=int, default=240)
parser.add_argument("--seed", type=int, default=3407)
parser.add_argument("--context_frames", type=int, default=12)
parser.add_argument("--context_overlap", type=int, default=3)
parser.add_argument("--cfg", type=float, default=2.5)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--sample_rate", type=int, default=16000)
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--ref_images_dir", type=str, default=f'./assets/halfbody_demo/refimag')
parser.add_argument("--audio_dir", type=str, default='./assets/halfbody_demo/audio')
parser.add_argument("--pose_dir", type=str, default="./assets/halfbody_demo/pose")
parser.add_argument("--refimg_name", type=str, default='natural_bk_openhand/0035.png')
parser.add_argument("--audio_name", type=str, default='chinese/echomimicv2_woman.wav')
parser.add_argument("--pose_name", type=str, default="01")
args = parser.parse_args()
return args
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = args.device
if device.__contains__("cuda") and not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
model_flag = '{}-iter{}'.format(config.motion_module_path.split('/')[-2], config.motion_module_path.split('/')[-1].split('-')[-1][:-4])
save_dir = Path(f"outputs/{model_flag}-seed{args.seed}/")
save_dir.mkdir(exist_ok=True, parents=True)
print(save_dir)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(device, dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
## denoising net init
if os.path.exists(config.motion_module_path):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False
)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device=device
)
pose_net.load_state_dict(torch.load(config.pose_encoder_path))
### load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
############# model_init finished #############
width, height = args.W, args.H
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=weight_dtype)
if args.seed is not None and args.seed > -1:
generator = torch.manual_seed(args.seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
final_fps = args.fps
ref_images_dir = args.ref_images_dir
audio_dir = args.audio_dir
pose_dir = args.pose_dir
refimg_name = args.refimg_name
audio_name = args.audio_name
pose_name = args.pose_name
inputs_dict = {
"refimg": f'{ref_images_dir}/{refimg_name}',
"audio": f'{audio_dir}/{audio_name}',
"pose": f'{pose_dir}/{pose_name}',
}
start_idx = 0
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
ref_flag = '.'.join([refimg_name.split('/')[-2], refimg_name.split('/')[-1]])
save_path = Path(f"{save_dir}/{ref_flag}/{pose_name}")
save_path.mkdir(exist_ok=True, parents=True)
ref_s = refimg_name.split('/')[-1].split('.')[0]
save_name = f"{save_path}/{ref_s}-a-{audio_name}-i{start_idx}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((args.W, args.H))
audio_clip = AudioFileClip(inputs_dict['audio'])
args.L = min(args.L, int(audio_clip.duration * final_fps), len(os.listdir(inputs_dict['pose'])))
pose_list = []
for index in range(start_idx, start_idx + args.L):
tgt_musk = np.zeros((args.W, args.H, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
tgt_musk[rb:re,cb:ce,:] = im
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(args.L / final_fps)
video = pipe(
ref_image_pil,
inputs_dict['audio'],
poses_tensor[:,:,:args.L,...],
width,
height,
args.L,
args.steps,
args.cfg,
generator=generator,
audio_sample_rate=args.sample_rate,
context_frames=args.context_frames,
fps=final_fps,
context_overlap=args.context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], args.L)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=final_fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
os.system("rm {}".format(save_name + "_woa_sig.mp4"))
print(save_name)
if __name__ == "__main__":
main()